RAS BiologyБиологические мембраны Membrane and Cell Biology

  • ISSN (Print) 0233-4755
  • ISSN (Online) 3034-5219

Fast Transfer of Photoreleased Protons from Water to Lipid Membrane

PII
S0233475525020029-1
DOI
10.31857/S0233475525020029
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 42 / Issue number 2
Pages
107-116
Abstract
The transfer of protons between the surface of lipid membrane and water can be slowed down by the presence of a high potential barrier, which affects the functioning of proton-transporting proteins. To evaluate the rate of the proton transfer across the barrier, the photoactivatable compounds that can adsorb on the membrane boundary and release protons upon excitation are used. One of these compounds, which we studied earlier, sodium salt of 2-methoxy-5-nitrophenylsulfate (MNPS), was used in this work. The molecule of MNPS can adsorb on the bilayer lipid membrane (BLM) as anion and release sulfate and proton upon excitation with UV light, becoming an electroneutral product. Upon illumination of the BLM, on one side of which MNPS anions were adsorbed, changes in the electrostatic potential at the membrane–water interface were observed. The slow changes of the potential were measured by the intramembrane field compensation method and the fast changes, by the operational amplifier as an electrometer. When the light was switched on, the potential increased rapidly, and when the light was switched off, the potential slowly returned to its initial value. The rate of rapid potential increase depended on the lipid composition of BLM, buffer concentration, and pH of the medium. The dependence of this rate on pH was different for BLMs formed from phosphatidylcholine and its mixture with phosphatidylserine. With increasing buffer concentration, the rate decreased tens of times. The results obtained indicate that the reaction of proton release formed during the excitation of MNPS molecules occurs both on the membrane surface and in the water near it. The main contribution to the change in the electrostatic potential at the membrane boundary is given by protons bound at its surface from the reaction in water.
Keywords
бислойная липидная мембрана поверхностный потенциал адсорбция протоны на поверхности мембраны
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Cherepanov D.A., Feniouk B.A., Junge W., Mulkidjanian A.Y. 2003. Low dielectric permittivity of water at the membrane interface: Effect on the energy coupling mechanism in biological membranes. Biophys. J. 85 (2), 1307–1316. doi 10.1016/S0006-3495(03)74565-2.
  2. 2. Georgievskii Yu., Medvedev E.S., Stuchebrukhov A.A. 2002. Proton transport via the membrane surface. Biophys. J. 82, 2833–2846. doi 10.1016/S0006-3495(02)75626-9.
  3. 3. Agmon N., Bakker H.J., Campen R.K., Henchman R.H., Pohl P., Roke S., Thamer M., Hassanali A. 2016. Protons and hydroxide ions in aqueous systems. Chem. Rev. 116 (13), 7642–7672. doi 10.1021/acs.chemrev.5b00736.
  4. 4. Zhang C., Knyazev D.G., Vereshaga Y.A., Ippoliti E., Nguyen T.H., Carloni P., Pohl P. 2012. Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a pathway for lateral proton diffusion. Proc. Natl. Acad. Sci. U.S.A. 109 (25), 9744–9749. doi 10.1073/pnas.1121227109
  5. 5. Weichselbaum E., Osterbauer M., Knyazev D.G., Batishchev O.V., Akimov S.A., Hai N.T., Zhang C., Knor G., Agmon N., Carloni P. 2017. Origin of proton affinity to membrane/water interfaces. Sci. Rep. 7, 4553. doi 10.1038/s41598-017-04675-9
  6. 6. Serowy S., Saparov S.M., Antonenko Y.N., Kozlovsky W., Hagen V., Pohl P. 2003. Structural proton diffusion along lipid bilayers. Biophys. J. 84 (2 Pt 1), 1031–1037. doi 10.1016/S0006-3495(03)74919-4
  7. 7. Springer A., Hagen V., Cherepanov D.A., Antonenko Y.N., Pohl P. 2011. Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface. Proc. Natl. Acad. Sci. U.S.A. 108 (35), 14461–14466. doi 10.1073/pnas.1107476108
  8. 8. Cherepanov D.A., Junge W., Mulkidjanian A.Y. 2004. Proton transfer dynamics at the membrane/water interface: Dependence on the fixed and mobile pH buffers, on the size and form of membrane particles, and on the interfacial potential barrier. Biophys. J. 86 (2), 665–680. doi 10.1016/S0006-3495(04)74146-6
  9. 9. Yamashita T., Voth G.A. 2010. Properties of hydrated excess protons near phospholipid bilayers. J. Phys. Chem. B. 114 (1), 592–603. doi 10.1021/jp908768c
  10. 10. Nguyen T.H., Zhang C., Weichselbaum E., Knyazev D.G., Pohl P., Carloni P. 2018. Interfacial water molecules at biological membranes: Structural features and role for lateral proton diffusion. PLoS. One. 13 (2), e0193454. doi 10.1371/journal.pone.0193454
  11. 11. Gutman M., Nachliel E., Bamberg E., Christensen B. 1987. Time-resolved protonation dynamics of a black lipid membrane monitored by capacitative currents. Biochim. Biophys. Acta. 905 (2), 390–398. doi 10.1016/0005-2736(87)90468-8
  12. 12. Fibich A., Janko K., Apell H.J. 2007. Kinetics of proton binding to the sarcoplasmic reticulum Ca-ATPase in the E1 state. Biophys. J. 93 (9), 3092–3104. doi 10.1529/biophysj.107.110791
  13. 13. Geissler D., Antonenko Y.N., Schmidt R., Keller S., Krylova O.O., Wiesner B., Bendig J., Pohl P., Hagen V. 2005. (Coumarin-4-yl)methyl esters as highly efficient, ultrafast phototriggers for protons and their application to acidifying membrane surfaces. Angew. Chem. Int. Ed. Engl. 44 (8), 1195–1198. doi 10.1002/anie.200461567
  14. 14. Вишнякова В.Е., Ташкин В.Ю., Терентьев А.О., Апель Х.-Ю., Соколов В.С. 2018. Связывание ионов калия в канале доступа с цитоплазматической стороны Na,K,ATP-азы. Биол. мембраны. 35 (5), 376–383. doi 10.1134/S0233475518040199
  15. 15. Ташкин В.Ю., Вишнякова В.Е., Щербаков А.А., Финогенова О.А., Ермаков Ю.А., Соколов В.С. 2019. Изменение емкости и граничного потенциала бислойной липидной мембраны при быстром освобождении протонов на ее поверхности . Биол. мембраны. 36 (2), 101–108. doi 10.1134/S0233475519020075
  16. 16. Sokolov V.S., Tashkin V.Yu., Zykova D.D., Kharitonova Yu.V., Galimzyanov T.R., Batishchev O.V. 2023. Electrostatic potentials caused by the release of protons from photoactivated compound sodium 2-methoxy-5-nitrophenyl sulfate at the surface of bilayer lipid membrane. Membranes. 13 (8), 722. doi 10.3390/membranes13080722
  17. 17. Mueller P., Rudin D.O., Tien H.T., Wescott W.C. 1963. Methods for the formation of single bimolecular lipid membranes in aqueous solution. J. Phys. Chem. 67, 534–535. doi 10.1021/j100796a529
  18. 18. MacDonald R.C., Bangham A.D. 1972. Comparison of double layer potentials in lipid monolayers and lipid bilayers membranes. J. Membrane Biol. 7, 29–53. doi 10.1007/BF01867908
  19. 19. Ermakov Yu.A., Sokolov V.S. Planar Lipid Bilayers (BLMs) and their applications. Eds. H.T.Tien, A.Ottova-Leitmannova. Amsterdam. Boston, London, New York, Oxford, Paris, Dan Diego, San Francisco, Singapore, Sidney, Tokio: Elsevier, 2003. p. 109–141.
  20. 20. Sokolov V.S., Mirsky V.M. Ultrathin Electrochemical Chemo- and Biosensors: Technology and Performance. Ed. Mirsky V.M. Heidelberg: Springer-Verlag, 2004. p. 255–291.
  21. 21. Cherny V.V., Sokolov V.S., Abidor I.G. 1980. Determination of surface charge of bilayer lipid membranes. Bioelectrochem. Bioenerg. 7, 413–420. doi 10.1016/0302-4598(80)80002-X
  22. 22. Denieva Z.G., Sokolov V.S., Batishchev O.V. 2024. HIV-1 Gag polyprotein affinity to the lipid membrane is independent of its surface charge. Biomolecules. 14 (9), 1086. doi 10.3390/biom14091086
  23. 23. Bangham A.D. 1968. Membrane models with phospholipids. Prog. Biophys. Mol. Biol. 18, 29–95. doi 10.1016/0079-6107(68)90019-9
  24. 24. Ермаков Ю.А., Авербах А.З., Арбузова А.Б., Сухарев С.И. 1998. Липидные и клеточные мембраны в присутствии гадолиния и других ионов с высоким сродством к липидам. 2. Дипольная компонента граничного потенциала мембран с разным поверхностным зарядом. Биол. мембраны. 15 (3), 330–341.
  25. 25. Mitkova D., Marukovich N., Ermakov Yu.A., Vitkova V. 2014. Bending rigidity of phosphatidylserine-containing lipid bilayers inacidic aqueous solutions. Colloids and Surfaces A: Physicochem. Eng. Aspects. 460, 71–78. doi 10.1016/j.colsurfa.2013.12.059
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library