RAS BiologyБиологические мембраны Membrane and Cell Biology

  • ISSN (Print) 0233-4755
  • ISSN (Online) 3034-5219

Electrostatic potentials during adsorption and photochemical reactions of pyranine on bilayer lipid membranes

PII
S0233475525010047-1
DOI
10.31857/S0233475525010047
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 42 / Issue number 1
Pages
45-52
Abstract
Adsorption and photochemical reactions of pyranine on a bilayer lipid membrane (BLM) have been studied by measuring electrostatic potentials at the membrane–water interface. The dependence of the electrostatic potentials due to the adsorption of pyranine on its concentration in solution is described by the Gouy–Chapman theory assuming that anions with three charged groups are adsorbed on the membrane. No significant changes in the boundary potential were found when BLM with pyranine adsorbed on it was illuminated. Significant changes in the potential were observed if molecules of styryl dyes di-4-ANEPPS or RH-421 were adsorbed on BLM in addition to pyranine. The sign and magnitude of these changes correspond to the disappearance of the dipole potential created by styryl dye molecules on the BLM. The rate of potential disappearance was proportional to pyranine concentration and illumination intensity. The disappearance of the potential can be caused either by the binding of protons released from the pyranine molecule to the dye molecules with their subsequent desorption from the BLM or by their destruction. Pyranine and styryl dye molecules can form complexes at the BLM boundary. This is evidenced by experiments in which the sum of the potential changes caused by their adsorption separately differed significantly from the change in the boundary potential during their simultaneous adsorption. The kinetics of the disappearance of the dipole potential of BLM with styryl dyes upon excitation of pyranine turned out to be similar to that observed earlier with another compound, 2-methoxy-5-nitrophenyl sodium sulfate, which releases protons at the membrane boundary upon illumination (Konstantinova et al., 2021. Biochem. (Mosc.), Suppl. Series A: Membr. Cell Biol. 15 (2), 142–146). This suggests that it is associated with the desorption of dye molecules from the membrane, due to the binding of protons released from excited pyranin molecules to them.
Keywords
пиранин стириловые красители протоны на границе мембраны адсорбция поверхностный потенциал липидная мембрана
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Ташкин В.Ю., Вишнякова В.Е., Щербаков А.А., Финогенова О.А., Ермаков Ю.А., Соколов В.С. 2019. Изменение емкости и граничного потенциала бислойной липидной мембраны при быстром освобождении протонов на ее поверхности . Биол. мембраны. 36 (2), 101–108. doi 10.1134/S0233475519020075
  2. 2. Sokolov V.S., Tashkin V.Yu., Zykova D.F., Kharitonova Yu.V., Galimzyanov T.R., Batishchev O.V. 2023. Electrostatic Potentials Caused by the Release of Protons from Photoactivated Compound Sodium 2-Methoxy-5-nitrophenyl Sulfate at the Surface of Bilayer Lipid Membrane. Membranes. 13, 722. doi 10.3390/membranes13080722
  3. 3. Geissler D., Antonenko Y.N., Schmidt R., Keller S., Krylova O.O., Wiesner B., Bendig J., Pohl P., Hagen V. 2005. (Coumarin-4-yl)methyl esters as highly efficient, ultrafast phototriggers for protons and their application to acidifying membrane surfaces. Angew.Chem.Int.Ed Engl. 44(8), 1195–1198. doi 10.1002/anie.200461567
  4. 4. Abbruzzetti S., Sottini S., Viappiani C., Corrie J.E. 2006. Acid-induced unfolding of myoglobin triggered by a laser pH jump method. Photochem.Photobiol.Sci. 5(6), 621–628. doi 10.1039/b516533d
  5. 5. Fibich A., Apell H.J. 2011. Kinetics of luminal proton binding to the SR Ca-ATPase. Biophys.J. 101(8), 1896–1904. doi 10.1016/j.bpj.2011.09.014
  6. 6. Ташкин В.Ю., Щербаков А.А., Апель Х.-Ю., Соколов В.С. 2013. Конкурентный транспорт ионов натрия и протонов в цитоплазматическом канале Na + , K + -ATP-азы. Биол. мембраны. 30 (2), 105–114.
  7. 7. Serowy S., Saparov S.M., Antonenko Y.N., Kozlovsky W., Hagen V., Pohl P. 2003. Structural proton diffusion along lipid bilayers. Biophys.J. 84 (2 Pt 1), 1031–1037. doi 10.1016/S0006-3495(03)74919-4
  8. 8. Springer A., Hagen V., Cherepanov D.A., Antonenko Y.N., Pohl P. 2011. Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface. Proc.Natl.Acad.Sci.U.S.A. 108 (35), 14461–14466. doi 10.1073/pnas.1107476108
  9. 9. Weichselbaum E., Osterbauer M., Knyazev D.G., Batishchev O.V., Akimov S.A., Hai N.T., Zhang C., Knor G., Agmon N., Carloni P., Pohl P. 2017. Origin of proton affinity to membrane/water interfaces. Sci.Rep. 7, 4553. doi 10.1038/s41598-017-04675-9
  10. 10. Weichselbaum E., Galimzyanov T., Batishchev O.V., Akimov S.A., Pohl P. 2023. Proton Migration on Top of Charged Membranes. Biomolecules. 13 (2), 352. doi 10.3390/biom13020352
  11. 11. Zhang C., Knyazev D.G., Vereshaga Y.A., Ippoliti E., Nguyen T.H., Carloni P., Pohl P. 2012. Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a pathway for lateral proton diffusion. Proc.Natl.Acad.Sci.USA. 109(25), 9744–9749. doi 10.1073/pnas.1121227109
  12. 12. Heberle J., Riesle J., Thiedemann G., Oesterhelt D., Dencher N.A. 1994. Proton migration along the membrane surface and retarded surface to bulk transfer. Nature. 370 (6488), 379–382. doi 10.1038/370379a0
  13. 13. Malkov D.Y., Sokolov V.S. 1996. Fluorescent styryl dyes of the RH series affect a potential drop on the membrane/solution boundary. Biochem.Biophys.Acta. 1278, 197–204. doi 10.1016/0005-2736(95)00197-2
  14. 14. Gross D., Loew L.M. 1989. Fluorescent indicators of membrane potential: microspectrofluorometry and imaging. Methods Cell Biol. 30, 193–218. doi 10.1016/S0091-679X(08)60980-2
  15. 15. Clarke R.J., Kane D.J. 1997. Optical detection of membrane dipole potential: avoidance of fluidity and dye-induced effects. Biochim.Biophys.Acta. 1323 (2), 223–239. doi 10.1016/s0005-2736(96)00188-5
  16. 16. Sokolov V.S., Gavrilchik A.N., Kulagina A.O., Meshkov I.N., Pohl P., Gorbunova Y.G. 2016. Voltage-sensitive styryl dyes as singlet oxygen targets on the surface of bilayer lipid membrane. J. Photochem. Photobiol.B. 161, 162–169. doi 10.1016/j.jphotobiol.2016.05.016
  17. 17. Константинова А.Н., Харитонова Ю.В., Ташкин В.Ю., Соколов В.С. 2021. Стириловые красители di-4-ANEPPS и RH-421 как датчики протонов на поверхности липидных мембран. Биол. мембраны. 38 (2), 123–128. doi 10.31857/S0233475521020079
  18. 18. Gutman M. 1986. Application of the laser-induced proton pulse for measuring the protonation rate constants of specific sites on proteins and membranes. Methods Enzymol. 127, 522–538. doi 10.1016/0076-6879(86)27042-1
  19. 19. Gutman M. 1984. The pH jump: probing of macromolecules and solutions by a laser-induced, ultrashort proton pulse--theory and applications in biochemistry. Methods Biochem.Anal. 30, 1–103. doi 10.1002/9780470110515.ch1
  20. 20. Nandi R., Amdursky N.A. 2022. The dual use of the pyranine (HPTS) fluorescent probe: A ground-state pH indicator and an excited-state proton transfer probe. Acc.Chem.Res. 55, 2728–2739. doi 10.1021/acs.accounts.2c00458
  21. 21. Gutman M., Nachliel E., Gershon E., Giniger R. 1983. Kinetic analysis of the protonation of a surface group of a macromolecule. Eur.J.Biochem. 134 (1), 63–69. doi 10.1111/j.1432-1033.1983.tb07531.x
  22. 22. Mueller P., Rudin D.O., Tien H.T., Wescott W.C. 1963. Methods for the formation of single bimolecular lipid membranes in aqueous solution. J.Phys.Chem. 67, 534–535.
  23. 23. Ermakov Yu.A., Sokolov V.S. 2003. Planar Lipid Bilayers (BLMs) and their applications.Ed. Tien H.T., Ottova-Leitmannova A. Amsterdam etc: Elsevier, p. 109–141.
  24. 24. Sokolov V.S., Mirsky V.M. 2004. Ultrathin electrochemical chemo- and biosensors: Technology and performance. Ed. Mirsky V.M. Heidelberg: Springer-Verlag, P. 255–291.
  25. 25. McLaughlin, S. 1977. Electrostatic potentials at membrane-solution interfaces. In: Current topics in membranes and transport. Eds. Bronner F., Kleinzeller A. New York, San Francosco, London: Acad. Press. V. 9, p. 71–144. https://doi.org/10.1016/S0070-2161 (08)60677-2.
  26. 26. Gutman M., Nachliel E., Bamberg E., Christensen B. 1987. Time-resolved protonation dynamics of a black lipid membrane monitored by capacitative currents. Biochim.Biophys. Acta. 905 (2), 390–398.
  27. 27. Agmon N., Bakker H.J., Campen R.K., Henchman R.H., Pohl P., Roke S., Thamer M., Hassanali A. 2016. Protons and hydroxide ions in aqueous systems. Chem.Rev. 116 (13), 7642–7672. doi 10.1021/acs.chemrev.5b00736
  28. 28. Knyazev D.G., Silverstein T.P., Brescia S., Maznichenko A., Pohl P. 2023. A new theory about interfacial proton diffusion revisited: the commonly accepted laws of electrostatics and diffusion prevail. Biomolecules. 13 (11), 1641. doi 10.3390/biom13111641
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library