RAS BiologyБиологические мембраны Membrane and Cell Biology

  • ISSN (Print) 0233-4755
  • ISSN (Online) 3034-5219

Simulation of the glycolytic metabolites concentration profile in mammalian resting skeletal muscles

PII
S0233475525010036-1
DOI
10.31857/S0233475525010036
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 42 / Issue number 1
Pages
31-44
Abstract
For the first time, a mathematical model of glycolysis in mammalian skeletal muscles is presented, in which stationary concentrations of glycolysis metabolites are in good agreement with experimental data obtained in resting muscles. The correspondence between the model and experimental values of metabolite concentrations was achieved due to enhancing the inhibitory effect of ATP on pyruvate kinase and significantly reducing the ratio of [NAD]/[NADH] concentrations in the cytoplasm of skeletal muscles. At the same time, in order for glycolysis to provide the rate of ATP production necessary for activation of muscle load, an activation of muscle pyruvate kinase by fructose-1,6-diphosphate was included in the model.
Keywords
гликолиз скелетные мышцы математическая модель пируваткиназа
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Chatzinikolaou P.N., Margaritelis N.V., Paschalis V., Theodorou A.A., Vrabas I.S., Kyparos A., D’Alessandro A., Nikolaidis M.G. 2024. Erythrocyte metabolism. Acta Physiol. 240 (3), e14081. doi 10.1111/apha.14081.
  2. 2. Domonkos J. 1961. The metabolism of the tonic and tetanic muscles I. Glycolytic metabolism. Arch. Biochem. Biophys. 95 (1), 138–143. doi 10.1016/0003–9861(61)90118–7.
  3. 3. Bass A., Brdiczka D., Eyer P., Hofer S., Pette D. 1969. Metabolic differentiation of distinct muscle types at the level of enzymatic organization. Eur. J. Biochem. 10 (2), 198–206. doi 10.1111/j.1432–1033.1969.tb00674.x.
  4. 4. Burleigh I.G., Schimke R.T. 1969. The activities of some enzymes concerned with energy metabolism in mammalian muscles of differing pigmentation. Biochem. J. 113 (1), 157–166. doi 10.1042/bj1130157.
  5. 5. Greenhaff P.L., Nevill M.E., Soderlund K., Bodin K., Boobis L.H., Williams C., Hultman E. 1994. The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting. J. Physiol. 478 (1), 149–155. doi 10.1113/jphysiol.1994.sp020238.
  6. 6. Vander Heiden M.G., Cantley L.C., Thompson C.B. 2009. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324 (5930), 1029–1033. doi 10.1126/science.1160809.
  7. 7. Zhou D., Duan Z., Li Z., Ge F., Wei R., Kong L. 2022. The significance of glycolysis in tumor progression and its relationship with the tumor microenvironment. Front. Pharmacol. 13. 1091779. doi 10.3389/fphar.2022.1091779.
  8. 8. Rigoulet M., Bouchez C.L., Paumard P., Ransac S., Cuvellier S., Duvezin-Caubet S., Mazat J.P., Devin A. 2020. Cell energy metabolism: An update. Biochim. Biophys. Acta – Bioenergetics. 1861 (11), 148276. doi 10.1016/j.bbabio.2020.148276.
  9. 9. Soto‐Heredero G., Gómez de las Heras M.M., Gabandé‐Rodríguez E., Oller J., Mittelbrunn M. 2020. Glycolysis – a key player in the inflammatory response. FEBS J. 287 (16), 3350–3369. doi 10.1111/febs.15327.
  10. 10. Fuller G.G., Kim J.K. 2021. Compartmentalization and metabolic regulation of glycolysis. J. Cell Sci. 134 (20), jcs258469. doi 10.1242/jcs.258469.
  11. 11. Gustavsson A.-K., van Niekerk D.D., Adiels C.B., Goksör M., Snoep J.L. 2014. Heterogeneity of glycolytic oscillatory behaviour in individual yeast cells. FEBS Lett. 588 (1), 3–7. doi 10.1016/j.febslet.2013.11.028.
  12. 12. Ньюсхолм Э., Старт К. 1977. Регуляция метаболизма. М.: Мир.
  13. 13. Rodwell V.W., Bender D., Botham K.M., Kennelly P.J., Weil P.A. 2018. Harper’s Illustrated Biochemistry, 31st ed. McGraw Hill / Medical, p. 412–428.
  14. 14. Ren J.M., Hultman E. 1989. Regulation of glycogenolysis in human skeletal muscle. J. Appl. Physiol. 67 (6), 2243–2248. doi 10.1152/jappl.1989.67.6.2243.
  15. 15. Chasiotis D., Sahlin K., Hultman E. 1982. Regulation of glycogenolysis in human muscle at rest and during exercise. J. Appl. Physiol. 53 (3), 708–15. doi 10.1152/jappl.1982.53.3.708.
  16. 16. Parolin M.L., Chesley A., Matsos M.P., Spriet L.L., Jones N.L., Heigenhauser G.J.F. 1999. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am. J. Physiol.-Endocrin. Metab. 277 (5), E890–900. doi 10.1152/ajpendo.1999.277.5.E890.
  17. 17. Ren J.M., Hultman E. 1990. Regulation of phosphorylase a activity in human skeletal muscle. J. Appl. Physiol. 69 (3), 919–923. doi 10.1152/jappl.1990.69.3.919.
  18. 18. Spriet L.L., Howlett R.A., Heigenhauser G.J.F. 2000. An enzymatic approach to lactate production in human skeletal muscle during exercise. Med. Sci. Sports Exerc. 32 (4), 756–763. doi 10.1097/00005768–200004000–00007.
  19. 19. Sahlin K., Gorski J., Edstrom L. 1990. Influence of ATP turnover and metabolite changes on IMP formation and glycolysis in rat skeletal muscle. Am. J. Physiol.-Cell Physiol. 259 (3), C409–C412. doi 10.1152/ajpcell.1990.259.3.C409.
  20. 20. Chasiotis D., Sahlin K., Hultman E. 1983. Regulation of glycogenolysis in human muscle in response to epinephrine infusion. J. Appl. Physiol. 54 (1), 45–50. doi 10.1152/jappl.1983.54.1.45.
  21. 21. Katz A., Westerblad H. 2014. Regulation of glycogen breakdown and its consequences for skeletal muscle function after training. Mamm. Gen. 25 (9–10), 464–472. doi 10.1007/s00335–014–9519-x.
  22. 22. Katz A. 2022. A century of exercise physiology: Key concepts in regulation of glycogen metabolism in skeletal muscle. Eur. J. Appl. Physiol. 122 (8), 1751–1772. doi 10.1007/s00421–022–04935–1.
  23. 23. Martinov M.V, Plotnikov A.G., Vitvitsky V.M., Ataullakhanov F.I. 2000. Deficiencies of glycolytic enzymes as a possible cause of hemolytic anemia. Biochim. Biophys. Acta – General Subjects. 1474 (1), 75–87. doi 10.1016/S0304–4165(99)00218–4.
  24. 24. Korendyaseva T.K., Kuvatov D.N., Volkov V.A., Martinov M.V, Vitvitsky V.M., Banerjee R., Ataullakhanov F.I. 2008. An allosteric mechanism for switching between parallel tracks in mammalian sulfur metabolism. PLoS Comput Biol. 4 (5), e1000076. doi 10.1371/journal.pcbi.1000076.
  25. 25. Zaitsev A.V., Martinov M.V., Vitvitsky V.M., Ataullakhanov F.I. 2019. Rat liver folate metabolism can provide an independent functioning of associated metabolic pathways. Sci. Rep. 9 (1), 7657. doi 10.1038/s41598–019–44009–5.
  26. 26. Ataullakhanov F.I., Martinov M.V., Shi Q., Vitvitsky V.M. 2022. Significance of two transmembrane ion gradients for human erythrocyte volume stabilization. PLoS One. 17 (12), e0272675. doi 10.1371/journal.pone.0272675.
  27. 27. Protasov E., Martinov M., Sinauridze E., Vitvitsky V., Ataullakhanov F. 2023. Prediction of oscillations in glycolysis in ethanol-consuming erythrocyte-bioreactors. Int. J. Mol. Sci. 24 (12), 10124. doi 10.3390/ijms241210124.
  28. 28. Lambeth M.J., Kushmerick M.J. 2002. A computational model for glycogenolysis in skeletal muscle. Ann. Biomed. Eng. 30 (6), 808–827. doi 10.1114/1.1492813.
  29. 29. Li Y., Dash R.K., Kim J., Saidel G.M., Cabrera M.E. 2009. Role of NADH/ NAD + transport activity and glycogen store on skeletal muscle energy metabolism during exercise: In silico studies. Am. J. Physiol.-Cell Physiol. 296 (1), C25–C46. doi 10.1152/ajpcell.00094.2008.
  30. 30. Schmitz J.P.J., Van Riel N.A.W., Nicolay K., Hilbers P.A.J., Jeneson J.A.L. 2010. Silencing of glycolysis in muscle: Experimental observation and numerical analysis. Exp. Physiol. 95 (2), 380–397. doi 10.1113/expphysiol.2009.049841.
  31. 31. Karl I.E., Voyles N., Recant L. 1968. Effects of plasma albumin on glycolytic intermediates in rat diaphragm muscle. Diabetes. 17 (6), 374–384. doi 10.2337/diab.17.6.374.
  32. 32. Harris R.C., Hultman E., Nordesjö L.O. 1974. Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand. J. Clin. Lab. Invest. 33 (2), 109–120.
  33. 33. Beatty C.H., Young M.K., Bocek R.M. 1976. Control of glycolysis in skeletal muscle from fetal rhesus monkeys. Pediatr. Res. 10 (3), 149–153. doi 10.1203/00006450–197603000–00001.
  34. 34. Cheetham M.E., Boobis L.H., Brooks S., Williams C. 1986. Human muscle metabolism during sprint running. J. Appl. Physiol. 61 (1), 54–60. doi 10.1152/jappl.1986.61.1.54.
  35. 35. Putman C.T., Jones N.L., Hultman E., Hollidge-Horvat M.G., Bonen A., McConachie D.R., Heigenhauser G.J.F. 1998. Effects of short-term submaximal training in humans on muscle metabolism in exercise. Am. J. Physio.l-Endocrin. Metab. 275 (1), E132–E139. doi 10.1152/ajpendo.1998.275.1.E132.
  36. 36. Ren J.M., Chasiotis D., Bergström M., Hultman E. 1988. Skeletal muscle glucolysis, glycogenolysis and glycogen phosphorylase during electrical stimulation in man. Acta Physiol. Scand. 133 (1), 101–107. doi 10.1111/j.1748–1716.1988.tb08387.x.
  37. 37. White A.T., Schenk S. 2012. NAD + /NADH and skeletal muscle mitochondrial adaptations to exercise. Am. J. Physiol.-Endocrin. Metab. 303 (3), E308–E321. doi 10.1152/ajpendo.00054.2012.
  38. 38. Hudlicka O., Aitman T., Heilig A., Leberer E., Tyler K.R., Pette D. 1984. Effects of different patterns of long-term stimulation on blood flow, fuel uptake and enzyme activities in rabbit fast skeletal muscles. Pflügers Arch. 402 (3), 306–311. doi 10.1007/BF00585514.
  39. 39. Burleigh I.G., Schimke R.T. 1968. On the activities of some enzymes concerned with glycolysis and glycogenolysis in extracts of rabbit skeletal muscles. Biochem. Biophys. Res. Commun. 31 (5), 831–836. doi 10.1016/0006–291X(68)90638–4.
  40. 40. Baldwin K., Winder W., Terjung R., Holloszy J. 1973. Glycolytic enzymes in different types of skeletal muscle: Adaptation to exercise. Am. J. Physiol.-Legacy Content. 225 (4), 962–966. doi 10.1152/ajplegacy.1973.225.4.962.
  41. 41. Surholt B., Newsholme E.A. 1981. Maximum activities and properties of glucose 6-phosphatase in muscles from vertebrates and invertebrates. Biochem. J. 198 (3), 621–629. doi 10.1042/bj1980621.
  42. 42. Blomstrand E., Ekblom B., Newsholme E.A. 1986. Maximum activities of key glycolytic and oxidative enzymes in human muscle from differently trained individuals. J. Physiol. 381 (1), 111–118. doi 10.1113/jphysiol.1986.sp016316.
  43. 43. Simoneau J.A., Bouchard C. 1989. Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am. J. Physiol.-Endocrin. Metab. 257 (4), E567–E572. doi 10.1152/ajpendo.1989.257.4.E567.
  44. 44. Howald H., Pette D., Simoneau J.-A., Uber A., Hoppeler H., Cerretelli P. 1990. Effects of chronic hypoxia on muscle enzyme activities. Int. J. Sports Med. 11 (S 1), S10–S14. doi 10.1055/s-2007–1024847.
  45. 45. Pette D., Dölken G. 1975. Some aspects of regulation of enzyme levels in muscle energy-supplying metabolism. Adv. Enzyme Regul. 13, 355–377. doi 10.1016/0065–2571(75)90025–4.
  46. 46. DiMauro S., Dalakas M., Miranda A.F. 1983. Phosphoglycerate kinase deficiency: Another cause of recurrent myoglobinuria. Ann. Neurol. 13 (1), 11–19. doi 10.1002/ana.410130104.
  47. 47. Bresolin N., Ro Y.-I., Reyes M., Miranda A.F., DiMauro S. 1983. Muscle phosphogylcerate mutase (PGAM) deficiency: A second case. Neurology. 33 (8), 1049–1053. doi 10.1212/WNL.33.8.1049.
  48. 48. Berg A., Kim S., Keul J. 1986. Skeletal muscle enzyme activities in healthy young subjects*. Int. J. Sports Med. 7 (4), 236–239. doi 10.1055/s-2008–1025766.
  49. 49. Shonk C.E., Koven B.J., Majima H., Boxer G.E. 1964. Enzyme patterns in human tissues. II. Glycolytic enzyme patterns in nonmalignant human tissues. Cancer Res. 24, 722–731.
  50. 50. Opie L., Newsholme E. 1967. The activities of fructose 1,6-diphosphatase, phosphofructokinase and phosphoenolpyruvate carboxykinase in white muscle and red muscle. Biochem. J. 103 (2), 391–399. doi 10.1042/bj1030391.
  51. 51. Roberts A., Billeter R., Howald H. 1982. Anaerobic muscle enzyme changes after interval training. Int. J. Sports Med. 3 (1), 18–21. doi 10.1055/s-2008–1026055.
  52. 52. Cohen C.D., Hindmarsh A.C. 1996. CVODE, A Stiff/Nonstiff ODE Solver in C. Computers in Physics. 10 (2), 138–143.
  53. 53. Doedel E.J., Paffenroth R.C., Champneys A.R., Fairgrieve T.F., Kuznetsov Y.A., Sandstede B., Wang X. 2001. AUTO 2000: Continuation and bifurcation software for ordinary differential equations (with HomCont). Technical Report, California Institute of Technology, Pasadena, CA 91125, USA.
  54. 54. Goldberg R.N., Tewari Y.B. 1995. Thermodynamics of enzyme-catalyzed reactions: Part 4. Lyases. J. Phys. Chem. Re.f Data. 24 (5), 1669–1698. doi 10.1063/1.555969.
  55. 55. Hoorn R.K.J., Flikweert J.P., Staal G.E.J. 1974. Purification and properties of enolase of human erythrocytes. Int. J. Biochem. 5 (11–12), 845–852. doi 10.1016/0020–711X(74)90119–0.
  56. 56. Wold F., Ballou C.E. 1957. Studies on the enzyme enolase. II. Kinetic studies. J. Biol. Chem. 227 (1), 313–328.
  57. 57. Goldberg R.N., Tewari Y.B. 1995. Thermodynamics of enzyme-catalyzed reactions: Part 5. Isomerases and ligases. J. Phys. Chem. Ref.Data. 24 (6), 1765–7801. doi 10.1063/1.555970.
  58. 58. Scopes R.K., Newbold R.P. 1968. Post-mortem glycolysis in ox skeletal muscle. Effect of pre-rigor freezing and thawing on the intermediary metabolism. Biochem. J. 109 (2), 197–202. doi 10.1042/bj1090197.
  59. 59. Dohm G.L., Patel V.K., Kasperek G.J. 1986. Regulation of muscle pyruvate metabolism during exercise. Biochem. Med. Metab. Biol. 35 (3), 260–266. doi 10.1016/0885–4505(86)90081–2.
  60. 60. Bissonnette D.J., Jeejeebhoy K.N. 1998. Feeding a low energy diet and refeeding a control diet affect glycolysis differently in the slow- and fast-twitch muscles of adult male wistar rats. J. Nutr. 128 (10), 1723–1730. doi 10.1093/jn/128.10.1723.
  61. 61. Veech R.L., Raijman L., Dalziel K., Krebs H.A. 1969. Disequilibrium in the triose phosphate isomerase system in rat liver. Biochem. J. 115 (4), 837–842. doi 10.1042/bj1150837.
  62. 62. Hagopian K., Tomilov A.A., Kim K., Cortopassi G.A., Ramsey J.J. 2015. Key glycolytic enzyme activities of skeletal muscle are decreased under fed and fasted states in mice with knocked down levels of Shc proteins. PLoS One. 10 (4), e0124204. doi 10.1371/journal.pone.0124204.
  63. 63. Goldberg R.N., Tewari Y.B. 1994. Thermodynamics of enzyme-catalyzed reactions: Part 2. Transferases. J. Phys. Chem. Ref. Data. 23 (4), 547–617. doi 10.1063/1.555948.
  64. 64. Cornell N.W., Leadbetter M., Veech R.L. 1979. Effects of free magnesium concentration and ionic strength on equilibrium constants for the glyceraldehyde phosphate dehydrogenase and phosphoglycerate kinase reactions. J. Biol. Chem. 254 (14), 6522–6527.
  65. 65. Goldberg R.N., Tewari Y.B., Bell D., Fazio K., Anderson E. 1993. Thermodynamics of enzyme-catalyzed reactions: Part 1. Oxidoreductases. J. Phys. Chem. Ref. Data. 22 (2), 515–582. doi 10.1063/1.555939.
  66. 66. Goldberg R.N., Tewari Y.B. 1995. Thermodynamics of enzyme-catalyzed reactions: Part 5. Isomerases and ligases. J. Phys. Chem. Re.f Data. 24 (6), 1765–1801. doi 10.1063/1.555970.
  67. 67. Drewes L.R., Gilboe D.D. 1973. Glycolysis and the permeation of glucose and lactate in the isolated, perfused dog brain during anoxia and postanoxic recovery. J. Biol. Chem. 248 (7), 2489–2496.
  68. 68. Eber S.W., Pekrun A., Bardosi A., Gahr M., Krietsch W.K.G., Krüger J., Matthei R., Schröter W. 1991. Triosephosphate isomerase deficiency: Haemolytic anaemia, myopathy with altered mitochondria and mental retardation due to a new variant with accelerated enzyme catabolism and diminished specific activity. Eur. J. Pediatr. 150 (11), 761–766. doi 10.1007/BF02026706.
  69. 69. Rijksen G., Staal G.E. 1978. Human erythrocyte hexokinase deficiency. Characterization of a mutant enzyme with abnormal regulatory properties. J. Clin. Invest. 62 (2), 294–301. doi 10.1172/JCI109129.
  70. 70. Minakami S., Suzuki C., Saito T., Yoshikawa H. 1965. Studies on erythrocyte glycolysis I. Determination of the glycolytic intermediates in human erythrocytes. J. Biochem. 58 (6), 543–550. doi 10.1093/oxfordjournals.jbchem.a128240.
  71. 71. Lim W.A., Raines R.T., Knowles J.R. 1988. Triosephosphate isomerase catalysis is diffusion controlled. Appendix: Analysis of triose phosphate equilibria in aqueous solution by phosphorus-31 NMR. Biochemistry. 27 (4), 1165–1167. doi 10.1021/bi00404a014.
  72. 72. Katz A., Broberg S., Sahlin K., Wahren J. 1986. Leg glucose uptake during maximal dynamic exercise in humans. Am. J. Physiol.-Endocrin. Metab. 251 (1), E65–E70. doi 10.1152/ajpendo.1986.251.1.E65.
  73. 73. Sahlin K., Katz A., Henriksson J. 1987. Redox state and lactate accumulation in human skeletal muscle during dynamic exercise. Biochem. J. 245 (2), 551–556. doi 10.1042/bj2450551.
  74. 74. Baker J.S., McCormick M.C., Robergs R.A. 2010. Interaction among skeletal muscle metabolic energy systems during intense exercise. J. Nutr. Metab. 2010, 1–13. doi 10.1155/2010/905612.
  75. 75. Ataullakhanov F.I., Vitvitsky V.M., Zhabotinsky A.M., Pichugin A.V, Platonova O.V, Kholodenko B.N., Ehrlich L.I. 1981. The regulation of glycolysis in human erythrocytes. The dependence of the glycolytic flux on the ATP concentration. Eur. J. Biochem. 115 (2), 359–365. doi 10.1111/j.1432–1033.1981.tb05246.x.
  76. 76. Hall E.R., Larry Cottam G. 1978. Isozymes of pyruvate kinase in vertebrates: Their physical, chemical, kinetic and immunological properties. Int. J. Biochem. 9 (11), 785–794. doi 10.1016/0020–711X(78)90027–7.
  77. 77. Zammit V.A., Beis I., Newsholme E.A. 1978. Maximum activities and effects of fructose bisphosphate on pyruvate kinase from muscles of vertebrates and invertebrates in relation to the control of glycolysis. Biochem. J. 174 (3), 989–998. doi 10.1042/bj1740989.
  78. 78. Phillips F.C., Ainsworth S. 1977. Allosteric properties of rabbit muscle pyruvate kinase. Int. J. Biochem. 8 (10), 729–735. doi 10.1016/0020–711X(77)90070–2.
  79. 79. Guguen-Guillouzo C., Szajnert M.-F., Marie J., Delain D., Schapira F. 1977. Differentiation in vivo and in vitro of pyruvate kinase isozymes in rat muscle. Biochimie. 59 (1), 65–71. doi 10.1016/S0300–9084(77)80087–4.
  80. 80. Harris W., Days R., Johnson C., Finkelstein I., Stallworth J., Hubert C. 1977. Studies on avian heart pyruvate kinase during development. Biochem. Biophys. Res. Commun. 75 (4), 1117–1121. doi 10.1016/0006–291X(77)91498-X.
  81. 81. Jensen K.K., Geoghagen N.S., Jin L., Holt T.G., Luo Q., Malkowitz L., Ni W., Quan S., Waters M.G., Zhwang A., Zhou H.H., Cheng K., Luo M.-J. 2011. Pharmacological activation and genetic manipulation of cystathionine beta-synthase alter circulating levels of homocysteine and hydrogen sulfide in mice. Eur. J. Pharmacol. 650 (1), 86–93. doi 10.1016/j.ejphar.2010.09.080.
  82. 82. Yuan X., Liu Y., Bijonowski B.M., Tsai A.-C., Fu Q., Logan T.M., Ma T., Li Y. 2020. NAD + /NADH redox alterations reconfigure metabolism and rejuvenate senescent human mesenchymal stem cells in vitro. Commun. Biol. 3 (1), 774. doi 10.1038/s42003–020–01514-y.
  83. 83. Pan X., Heacock M.L., Abdulaziz E.N., Violante S., Zuckerman A.L., Shrestha N., Yao C., Goodman R.P., Cross J.R., Cracan V. 2024. A genetically encoded tool to increase cellular NADH/ NAD + ratio in living cells. Nat. Chem. Biol. 20 (5), 594–604. doi 10.1038/s41589–023–01460-w.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library