RAS BiologyБиологические мембраны Membrane and Cell Biology

  • ISSN (Print) 0233-4755
  • ISSN (Online) 3034-5219

Thermodynamics of a Lipid Membrane with Curvature

PII
S0233475525020051-1
DOI
10.31857/S0233475525020051
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 42 / Issue number 2
Pages
142-149
Abstract
In this paper, we consider the lateral bending of the membrane surface and the lateral pressure profile in the neutral part of the membrane (the neutral part is the part of the membrane where no work is done to change the pressure). They are chosen in such a way as to calculate the given law of curvature change. Next, the lateral pressure along the thickness of the curved membrane is obtained. Computing the pressure profile along the thickness of the monolayer involves some difficulties. The formulas for these and other characteristics such as spontaneous bending moment, Gauss modulus for different phases and torsional modulus Ktw = K2 are given here. The formula for the lateral pressure profile in a membrane with curvature is obtained using the renormalization group.
Keywords
липидная мембрана профиль латерального давления модуль Гаусса модуль кручения кривизна
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Дроздова, А. А., Мухин, С. И. 2017. Профиль латерального давления в липидных мембранах с кривизной: аналитический расчет. Журн. эксперим. и теорет. физики, 152 (2), 416–422
  2. 2. Ollila O.H., Risselada H.J., Louhivuori M., Lindahl E., Vattulainen I., Marrink S.J. 2009. 3D pressure field in lipid membrane and membrane-protein complexes. Phys. Rev. Lett. 102, 078101.
  3. 3. Marsh D. 2007. Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. Biophys. J. 93, 3884–3899.
  4. 4. Quint D.A., Gopinathan A., Grason G.M. 2016. Shape selection of surface-bound helical filaments: Biopolymers on curved membranes. Biophys. J. 111 (7), 1575–1585.
  5. 5. Gore J., Bryant Z., Nöllmann M., Le M.U, Cozzarelli N.R., Bustamante C. 2006. DNA overwinds when stretched. Nature. 442, 836–839.
  6. 6. Hamm M., Kozlov M.M. 1998. Tilt model of inverted amphiphilic mesophases. Eur. Phys. J. B–Condensed Matter and Complex Systems, 6, 519–528.
  7. 7. Gibaud T., Kaplan C.N., Sharma P., Zakhary M.J., Ward A., Oldenbourg R., Meyer R.B., Kamien R.D., Powers T.R., Dogic Z. 2017. Achiral symmetry breaking and positive Gaussian modulus lead to scalloped colloidal membranes. Proc. Natl. Acad. Sci. USA. 114 (17), E3376-E3384.
  8. 8. Kozlovsky Y., Efrat A., Siegel D.A., Kozlov M.M. 2004. Stalk phase formation: Effects of dehydration and saddle splay modulus. Biophys. J. 87 (4), 2508–2521.
  9. 9. Hu M., de Jong D.H., Marrink S.J., Deserno M. 2013. Gaussian curvature elasticity determined from global shape transformations and local stress distributions: A comparative study using the MARTINI model. Faraday Discussions. 161, 365–382.
  10. 10. Leikin S., Kozlov M.M., Fuller N.L., Rand R.P. 1996. Measured effects of diacylglycerol on structural and elastic properties of phospholipid membranes. Biophys. J. 71 (5), 2623–2632
  11. 11. Helfrich W., Kozlov M.M. 1993. Bending tensions and the bending rigidity of fluid membranes. J. Phys. II France. 3, 287–292.
  12. 12. Nagle J. 2017. Experimentally determined tilt and bending moduli of single-component lipid bilayers. Chem. Phys. Lipids. 205, 18–24
  13. 13. Kheyfets B.B., Galimzyanov T.R., Drozdova A.A., Mukhin S.I. 2016. Analytical calculation of the lipid bilayer bending modulus. Phys. Rev. E. 94, 042415.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library