ОБНБиологические мембраны Membrane and Cell Biology

  • ISSN (Print) 0233-4755
  • ISSN (Online) 3034-5219

Рекомбинантные белковые биосенсоры липидов клеточных мембран

Код статьи
S0233475525020017-1
DOI
10.31857/S0233475525020017
Тип публикации
Обзор
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 42 / Номер выпуска 2
Страницы
87-106
Аннотация
Специфические паттерны распределения различных липидов в клеточных мембранах определяют их структурные и сигнальные роли, а также обеспечивают целостность и функциональность цитоплазматической мембраны и клеточных органелл. Последние достижения в области создания рекомбинантных липидных биосенсоров и методов визуализации позволяют напрямую наблюдать распределение, перемещение и динамику липидов в клетке, что заметно продвинуло понимание функции липидов и реакций с их участием как на клеточном, так и на субклеточном уровнях. В данном обзоре мы обобщили данные, касающиеся разработок в области проектирования и применения рекомбинантных белковых сенсоров к различным липидам клеточных мембран.
Ключевые слова
липидные сенсоры клеточные мембраны рекомбинантные сенсоры
Дата публикации
17.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
23

Библиография

  1. 1. Van Meer G., Lisman Q. 2002. Sphingolipid transport: Rafts and translocators. J. Biol. Chem. 277, 25855–25858. doi 10.1074/jbc.R200010200
  2. 2. Marsh D. 2009. Cholesterol-induced fluid membrane domains: A compendium of lipid-raft ternary phase diagrams. Biochim. Biophys. Acta BBA - Biomembr. 1788, 2114–2123. doi 10.1016/j.bbamem.2009.08.004
  3. 3. London E. 2005. How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells. Biochim. Biophys. Acta BBA - Mol. Cell Res. 1746, 203–220. doi 10.1016/j.bbamcr.2005.09.002
  4. 4. Van Meer G., Voelker D.R., Feigenson G.W. 2008. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124. doi 10.1038/nrm2330
  5. 5. Osawa T., Fujikawa K., Shimamoto K. 2024. Structures, functions, and syntheses of glycero-glycophospholipids. Front. Chem. 12, 1353688. doi 10.3389/fchem.2024.1353688
  6. 6. Korbecki J., Bosiacki M., Kupnicka P., Barczak K., Ziętek P., Chlubek D., Baranowska-Bosiacka I. 2024. Biochemistry and diseases related to the interconversion of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. Int. J. Mol. Sci. 25, 10745. doi 10.3390/ijms251910745
  7. 7. Chen L., Chen X.-W., Huang X., Song B.-L., Wang Y., Wang Y. 2019. Regulation of glucose and lipid metabolism in health and disease. Sci. China Life Sci. 62, 1420–1458. doi 10.1007/s11427-019-1563-3
  8. 8. Burke J.E. 2018. Structural basis for regulation of phosphoinositide kinases and their involvement in human disease. Mol. Cell. 71, 653–673. doi 10.1016/j.molcel.2018.08.005
  9. 9. Billcliff P.G., Lowe M. 2014. Inositol lipid phosphatases in membrane trafficking and human disease. Biochem. J. 461, 159–175. doi 10.1042/BJ20140361
  10. 10. Maekawa M., Fairn G.D. 2014. Molecular probes to visualize the location, organization and dynamics of lipids. J. Cell Sci. jcs.150524. doi 10.1242/jcs.150524
  11. 11. Eurtivong C., Leung E., Sharma N., Leung I.K.H., Reynisson J. 2023. Phosphatidylcholine-specific phospholipase C as a promising drug target. Molecules. 28, 5637. doi 10.3390/molecules28155637
  12. 12. Exton J.H. 1994. Phosphatidylcholine breakdown and signal transduction. Biochim. Biophys. Acta BBA – Lipids Lipid Metab. 1212, 26–42. doi 10.1016/0005-2760(94)90186-4
  13. 13. Kennedy E.P., Weiss S.B. 1956. The function of cytidine coenzymes in the biosynthesis of phospholipids. J. Biol. Chem. 222, 193–214. doi 10.1016/S0021-9258(19)50785-2
  14. 14. Vance D.E., Ridgway N.D. 1988. The methylation of phosphatidylethanolamine. Prog. Lipid Res. 27, 61–79. doi 10.1016/0163-7827(88)90005-7
  15. 15. Eichner N.Z.M., Gilbertson N.M., Musante L., La Salvia S., Weltman A., Erdbrügger U., Malin S.K. 2019. An oral glucose load decreases postprandial extracellular vesicles in obese adults with and without prediabetes. Nutrients. 11, 580. doi 10.3390/nu11030580
  16. 16. Jimenez J.J., Jy W., Mauro L.M., Soderland C., Horstman L.L., Ahn Y.S. 2003. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb. Res. 109, 175–180. doi 10.1016/S0049-3848(03)00064-1
  17. 17. Enjeti A., Lincz L., Seldon M. 2007. Detection and measurement of microparticles: An evolving research tool for vascular biology. Semin. Thromb. Hemost. 33, 771–779. doi 10.1055/s-2007-1000369
  18. 18. Connor D.E., Exner T., Ma D.D.F., Joseph J.E. 2010. The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib. Thromb. Haemost. 103, 1044–1052. doi 10.1160/TH09-09-0644
  19. 19. Key N.S. 2010. Analysis of tissue factor positive microparticles. Thromb. Res. 125, S42–S45. doi 10.1016/j.thromres.2010.01.035
  20. 20. Ridger V.C., Boulanger C.M., Angelillo-Scherrer A., Badimon L., Blanc-Brude O., Bochaton-Piallat M.-L., Boilard E., Buzas E.I., Caporali A., Dignat-George F., Evans P.C., Lacroix R., Lutgens E., Ketelhuth D.F.J., Nieuwland R., Toti F., Tuñon J., Weber C., Hoefer I.E., Lip G.Y.H., Werner N., Shantsila E., Ten Cate H., Thomas M., Harrison P. 2017. Microvesicles in vascular homeostasis and diseases: Position paper of the European society of cardiology (ESC) working group on atherosclerosis and vascular biology. Thromb. Haemost. 117, 1296–1316. doi 10.1160/TH16-12-0943
  21. 21. An S.J., Stagi M., Gould T.J., Wu Y., Mlodzianoski M., Rivera-Molina F., Toomre D., Strittmatter S.M., De Camilli P., Bewersdorf J., Zenisek D. 2022. Multimodal imaging of synaptic vesicles with a single probe. Cell Rep. Methods. 2, 100199. doi 10.1016/j.crmeth.2022.100199
  22. 22. Hirano Y., Gao Y.-G., Stephenson D.J., Vu N.T., Malinina L., Simanshu D.K., Chalfant C.E., Patel D.J., Brown R.E. 2019. Structural basis of phosphatidylcholine recognition by the C2–domain of cytosolic phospholipase A2α. eLife. 8, e44760. doi 10.7554/eLife.44760
  23. 23. Ward K.E., Ropa J.P., Adu-Gyamfi E., Stahelin R.V. 2012. C2 domain membrane penetration by group IVA cytosolic phospholipase A2 induces membrane curvature changes. J. Lipid Res. 53, 2656–2666. doi 10.1194/jlr.M030718
  24. 24. Perisic O., Paterson H.F., Mosedale G., Lara-González S., Williams R.L. 1999. Mapping the phospholipid-binding surface and translocation determinants of the C2 domain from cytosolic phospholipase A2. J. Biol. Chem. 274, 14979–14987. doi 10.1074/jbc.274.21.14979
  25. 25. Rand M.L., Wang H., Pluthero F.G., Stafford A.R., Ni R., Vaezzadeh N., Allison A.C., Kahr W.H.A., Weitz J.I., Gross P.L. 2012. Diannexin, an annexin A5 homodimer, binds phosphatidylserine with high affinity and is a potent inhibitor of platelet‐mediated events during thrombus formation. J. Thromb. Haemost. 10, 1109–1119. doi 10.1111/j.1538-7836.2012.04716.x
  26. 26. Shao C., Novakovic V.A., Head J.F., Seaton B.A., Gilbert G.E. 2008. Crystal structure of lactadherin C2 domain at 1.7Å resolution with mutational and computational analyses of its membrane-binding motif. J. Biol. Chem. 283, 7230–7241. doi 10.1074/jbc.M705195200
  27. 27. Ye H., Li B., Subramanian V., Choi B.-H., Liang Y., Harikishore A., Chakraborty G., Baek K., Yoon H.S. 2013. NMR solution structure of C2 domain of MFG-E8 and insights into its molecular recognition with phosphatidylserine. Biochim. Biophys. Acta BBA – Biomembr. 1828, 1083–1093. doi 10.1016/j.bbamem.2012.12.009
  28. 28. Uchida Y., Hasegawa J., Chinnapen D., Inoue T., Okazaki S., Kato R., Wakatsuki S., Misaki R., Koike M., Uchiyama Y., Iemura S., Natsume T., Kuwahara R., Nakagawa T., Nishikawa K., Mukai K., Miyoshi E., Taniguchi N., Sheff D., Lencer W.I., Taguchi T., Arai H. 2011. Intracellular phosphatidylserine is essential for retrograde membrane traffic through endosomes. Proc. Natl. Acad. Sci. 108, 15846–15851. doi 10.1073/pnas.1109101108
  29. 29. Nakai W., Yoshida T., Diez D., Miyatake Y., Nishibu T., Imawaka N., Naruse K., Sadamura Y., Hanayama R. 2016. A novel affinity-based method for the isolation of highly purified extracellular vesicles. Sci. Rep. 6, 33935. doi 10.1038/srep33935
  30. 30. Miyanishi M., Tada K., Koike M., Uchiyama Y., Kitamura T., Nagata S. 2007. Identification of Tim4 as a phosphatidylserine receptor. Nature. 450, 435–439. doi 10.1038/nature06307
  31. 31. Maib H., Adarska P., Hunton R., Vines J.H., Strutt D., Bottanelli F., Murray D.H. 2024. Recombinant biosensors for multiplex and super-resolution imaging of phosphoinositides. J. Cell Biol. 223, e202310095. doi 10.1083/jcb.202310095
  32. 32. Pemberton J.G., Kim Y.J., Humpolickova J., Eisenreichova A., Sengupta N., Toth D.J., Boura E., Balla T. 2020. Defining the subcellular distribution and metabolic channeling of phosphatidylinositol. J. Cell Biol. 219, doi 10.1083/jcb.201906130
  33. 33. Sankaran V.G., Klein D.E., Sachdeva M.M., Lemmon M.A. 2001. High-affinity binding of a FYVE domain to phosphatidylinositol 3-phosphate requires intact phospholipid but not FYVE Ddomain oligomerization. Biochemistry. 40, 8581–8587. doi 10.1021/bi010425d
  34. 34. Burd C.G., Emr S.D. 1998. Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol. Cell. 2, 157–162. doi 10.1016/S1097-2765(00)80125-2
  35. 35. Hammond G.R.V., Balla T. 2015. Polyphosphoinositide binding domains: Key to inositol lipid biology. Biochim. Biophys. Acta BBA - Mol. Cell Biol. Lipids. 1851, 746–758. doi 10.1016/j.bbalip.2015.02.013
  36. 36. Gaullier J.-M., Rønning E., Gillooly D.J., Stenmark H. 2000. Interaction of the EEA1 FYVE Finger with phosphatidylinositol 3-phosphate and early endosomes. J. Biol. Chem. 275, 24595–24600. doi 10.1074/jbc.M906554199
  37. 37. Bravo J., Karathanassis D., Pacold C.M., Pacold M.E., Ellson C.D., Anderson K.E., Butler P.J.G., Lavenir I., Perisic O., Hawkins P.T., Stephens L., Williams R.L. 2001. The crystal structure of the PX domain from p40phox bound to phosphatidylinositol 3-phosphate. Mol. Cell. 8, 829–839. doi 10.1016/S1097-2765(01)00372-0
  38. 38. Dolinsky S., Haneburger I., Cichy A., Hannemann M., Itzen A., Hilbi H. 2014. The Legionella longbeachae Icm/dot substrate SidC selectively binds phosphatidylinositol 4-phosphate with nanomolar affinity and promotes pathogen vacuole-endoplasmic reticulum interactions. Infect. Immun. 82, 4021–4033. doi 10.1128/IAI.01685-14
  39. 39. He J., Scott J.L., Heroux A., Roy S., Lenoir M., Overduin M., Stahelin R.V., Kutateladze T.G. 2011. Molecular basis of phosphatidylinositol 4-phosphate and ARF1 GTPase recognition by the FAPP1 pleckstrin homology (PH) domain. J. Biol. Chem. 286, 18650–18657. doi 10.1074/jbc.M111.233015
  40. 40. Brombacher E., Urwyler S., Ragaz C., Weber S.S., Kami K., Overduin M., Hilbi H. 2009. Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J. Biol. Chem. 284, 4846–4856. doi 10.1074/jbc.M807505200
  41. 41. Gozani O., Karuman P., Jones D.R., Ivanov D., Cha J., Lugovskoy A.A., Baird C.L., Zhu H., Field S.J., Lessnick S.L., Villasenor J., Mehrotra B., Chen J., Rao V.R., Brugge J.S., Ferguson C.G., Payrastre B., Myszka D.G., Cantley L.C., Wagner G., Divecha N., Prestwich G.D., Yuan J. 2003. The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell. 114, 99–111. doi 10.1016/S0092-8674(03)00480-X
  42. 42. Manna D., Albanese A., Park W.S., Cho W. 2007. Mechanistic basis of differential cellular responses of phosphatidylinositol 3,4-bisphosphate- and phosphatidylinositol 3,4,5-trisphosphate-binding pleckstrin homology domains. J. Biol. Chem. 282, 32093–32105. doi 10.1074/jbc.M703517200
  43. 43. Goulden B.D., Pacheco J., Dull A., Zewe J.P., Deiters A., Hammond G.R.V. 2019. A high-avidity biosensor reveals plasma membrane PI(3,4)P2 is predominantly a class I PI3K signaling product. J. Cell Biol. 218, 1066–1079. doi 10.1083/jcb.201809026
  44. 44. Vines J.H., Maib H., Buckley C.M., Gueho A., Zhu Z., Soldati T., Murray D.H., King J.S. 2023. A PI(3,5)P2 reporter reveals PIKfyve activity and dynamics on macropinosomes and phagosomes. J. Cell Biol. 222, e202209077. doi 10.1083/jcb.202209077
  45. 45. Klein P., Mattoon D., Lemmon M.A., Schlessinger J. 2004. A structure-based model for ligand binding and dimerization of EGF receptors. Proc. Natl. Acad. Sci. 101, 929–934. doi 10.1073/pnas.0307285101
  46. 46. Garcia P., Gupta R., Shah S., Morris A.J., Rudge S.A., Scarlata S., Petrova V., McLaughlin S., Rebecchi M.J. 1995. The pleckstrin homology domain of phospholipase C-.delta.1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. Biochemistry. 34, 16228–16234. doi 10.1021/bi00049a039
  47. 47. Fukuda M., Kojima T., Kabayama H., Mikoshiba K. 1996. Mutation of the Pleckstrin Homology domain of bruton’s tyrosine kinase in immunodeficiency impaired inositol 1,3,4,5-tetrakisphosphate binding capacity. J. Biol. Chem. 271, 30303–30306. doi 10.1074/jbc.271.48.30303
  48. 48. Kassas N., Tanguy E., Thahouly T., Fouillen L., Heintz D., Chasserot-Golaz S., Bader M.-F., Grant N.J., Vitale N. 2017. Comparative characterization of phosphatidic acid sensors and their localization during frustrated phagocytosis. J. Biol. Chem. 292, 4266–4279. doi 10.1074/jbc.M116.742346
  49. 49. Makino A., Abe M., Murate M., Inaba T., Yilmaz N., Hullin‐Matsuda F., Kishimoto T., Schieber N.L., Taguchi T., Arai H., Anderluh G., Parton R.G., Kobayashi T. 2015. Visualization of the heterogeneous membrane distribution of sphingomyelin associated with cytokinesis, cell polarity, and sphingolipidosis. FASEB J. 29, 477–493. doi 10.1096/fj.13-247585
  50. 50. Kiyokawa E., Baba T., Otsuka N., Makino A., Ohno S., Kobayashi T. 2005. Spatial and functionalheterogeneity of sphingolipid-rich membrane domains. J. Biol. Chem. 280, 24072–24084. doi 10.1074/jbc.M502244200
  51. 51. Hong Q., Gutiérrez-Aguirre I., Barlič A., Malovrh P., Kristan K., Podlesek Z., Maček P., Turk D., González-Mañas J.M., Lakey J.H., Anderluh G. 2002. Two-step membrane binding by Equinatoxin II, a pore-forming toxin from the sea anemone, involves an exposed aromatic cluster and a flexible helix. J. Biol. Chem. 277, 41916–41924. doi 10.1074/jbc.M204625200
  52. 52. Yokoyama J., Matsuda T., Koshiba S., Tochio N., Kigawa T. 2011. A practical method for cell-free protein synthesis to avoid stable isotope scrambling and dilution. Anal. Biochem. 411, 223–229. doi 10.1016/j.ab.2011.01.017.
  53. 53. Makino A., Abe M., Ishitsuka R., Murate M., Kishimoto T., Sakai S., Hullin‐Matsuda F., Shimada Y., Inaba T., Miyatake H., Tanaka H., Kurahashi A., Pack C., S. Kasai R., Kubo S., L. Schieber N., Dohmae N., Tochio N., Hagiwara K., Sasaki Y., Aida Y., Fujimori F., Kigawa T., Nishibori K., Parton R.G., Kusumi A., Sako Y., Anderluh G., Yamashita M., Kobayashi T., Greimel P., Kobayashi T. 2017. A novel sphingomyelin/cholesterol domain‐specific probe reveals the dynamics of the membrane domains during virus release and in Niemann‐Pick type C. FASEB J. 31, 1301–1322. doi 10.1096/fj.201500075R
  54. 54. Bhat H.B., Ishitsuka R., Inaba T., Murate M., Abe M., Makino A., Kohyama-Koganeya A., Nagao K., Kurahashi A., Kishimoto T., Tahara M., Yamano A., Nagamune K., Hirabayashi Y., Juni N., Umeda M., Fujimori F., Nishibori K., Yamaji-Hasegawa A., Greimel P., Kobayashi T. 2015. Evaluation of aegerolysins as novel tools to detect and visualize ceramide phosphoethanolamine, a major sphingolipid in invertebrates. FASEB J. 29, 3920–3934. doi 10.1096/fj.15-272112
  55. 55. Shimada Y., Maruya M., Iwashita S., Ohno‐Iwashita Y. 2002. The C‐terminal domain of perfringolysin O is an essential cholesterol‐binding unit targeting to cholesterol‐rich microdomains. Eur. J. Biochem. 269, 6195–6203. doi 10.1046/j.1432-1033.2002.03338.x
  56. 56. Buwaneka P., Ralko A., Liu S.-L., Cho W. 2021. Evaluation of the available cholesterol concentration in the inner leaflet of the plasma membrane of mammalian cells. J. Lipid Res. 62, 100084. doi 10.1016/j.jlr.2021.100084
  57. 57. Cocklin S., Jost M., Robertson N.M., Weeks S.D., Weber H., Young E., Seal S., Zhang C., Mosser E., Loll P.J., Saunders A.J., Rest R.F., Chaiken I.M. 2006. Real‐time monitoring of the membrane‐binding and insertion properties of the cholesterol‐dependent cytolysin anthrolysin O from Bacillus anthracis. J. Mol. Recognit. 19, 354–362. doi 10.1002/jmr.784
  58. 58. Yamaji-Hasegawa A., Murate M., Inaba T., Dohmae N., Sato M., Fujimori F., Sako Y., Greimel P., Kobayashi T. 2022. A novel sterol-binding protein reveals heterogeneous cholesterol distribution in neurite outgrowth and in late endosomes/lysosomes. Cell. Mol. Life Sci. 79, 324. doi 10.1007/s00018-022-04339-6
  59. 59. Koh D.H.Z., Naito T., Na M., Yeap Y.J., Rozario P., Zhong F.L., Lim K.-L., Saheki Y. 2023. Visualization of accessible cholesterol using a GRAM domain-based biosensor. Nat. Commun. 14, 6773. doi 10.1038/s41467-023-42498-7
  60. 60. Wang S., Zhang S., Liou L.-C., Ren Q., Zhang Z., Caldwell G.A., Caldwell K.A., Witt S.N. 2014. Phosphatidylethanolamine deficiency disrupts α-synuclein homeostasis in yeast and worm models of Parkinson disease. Proc. Natl. Acad. Sci. 111, doi 10.1073/pnas.1411694111
  61. 61. Vance J.E. 2015. Phospholipid synthesis and transport in mammalian cells. Traffic. 16, 1–18. doi 10.1111/tra.12230
  62. 62. Bogdanov M., Dowhan W., Vitrac H. 2014. Lipids and topological rules governing membrane protein assembly. Biochim. Biophys. Acta BBA - Mol. Cell Res. 1843, 1475–1488. doi 10.1016/j.bbamcr.2013.12.007
  63. 63. Tatsuta T., Scharwey M., Langer T. 2014. Mitochondrial lipid trafficking. Trends Cell Biol. 24, 44–52. doi 10.1016/j.tcb.2013.07.011
  64. 64. Siegel D.P., Epand R.M. 2000. Effect of influenza hemagglutinin fusion peptide on lamellar/inverted phase transitions in dipalmitoleoylphosphatidylethanolamine: implications for membrane fusion mechanisms. Biochim. Biophys. Acta BBA - Biomembr. 1468, 87–98. doi 10.1016/S0005-2736(00)00246-7
  65. 65. Yang L., Ding L., Huang H.W. 2003. New Phases of phospholipids and implications to the membrane fusion problem. Biochemistry. 42, 6631–6635. doi 10.1021/bi0344836
  66. 66. Calzada E., Avery E., Sam P.N., Modak A., Wang C., McCaffery J.M., Han X., Alder N.N., Claypool S.M. 2019. Phosphatidylethanolamine made in the inner mitochondrial membrane is essential for yeast cytochrome bc1 complex function. Nat. Commun. 10, 1432. doi 10.1038/s41467-019-09425-1
  67. 67. Shinzawa-Itoh K., Aoyama H., Muramoto K., Terada H., Kurauchi T., Tadehara Y., Yamasaki A., Sugimura T., Kurono S., Tsujimoto K., Mizushima T., Yamashita E., Tsukihara T., Yoshikawa S. 2007. Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c oxidase. EMBO J. 26, 1713–1725. doi 10.1038/sj.emboj.7601618
  68. 68. Ichimura Y., Kirisako T., Takao T., Satomi Y., Shimonishi Y., Ishihara N., Mizushima N., Tanida I., Kominami E., Ohsumi M., Noda T., Ohsumi Y. 2000. A ubiquitin-like system mediates protein lipidation. Nature. 408, 488–492. doi 10.1038/35044114
  69. 69. Kagan V.E., Mao G., Qu F., Angeli J.P.F., Doll S., Croix C.S., Dar H.H., Liu B., Tyurin V.A., Ritov V.B., Kapralov A.A., Amoscato A.A., Jiang J., Anthonymuthu T., Mohammadyani D., Yang Q., Proneth B., Klein-Seetharaman J., Watkins S., Bahar I., Greenberger J., Mallampalli R.K., Stockwell B.R., Tyurina Y.Y., Conrad M., Bayır H. 2017. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81–90. doi 10.1038/nchembio.2238
  70. 70. Deleault N.R., Piro J.R., Walsh D.J., Wang F., Ma J., Geoghegan J.C., Supattapone S. 2012. Isolation of phosphatidylethanolamine as a solitary cofactor for prion formation in the absence of nucleic acids. Proc. Natl. Acad. Sci. 109, 8546–8551. doi 10.1073/pnas.1204498109
  71. 71. Banfield M.J., Barker J.J., Perry A.C., Brady R.L. 1998. Function from structure? The crystal structure of human phosphatidylethanolamine-binding protein suggests a role in membrane signal transduction. Structure. 6, 1245–1254. doi 10.1016/S0969-2126(98)00125-7
  72. 72. Bucquoy S., Jollès P., Schoentgen F. 1994. Relationships between molecular interactions (nucleotides, lipids and proteins) and structural features of the bovine brain 21‐kDa protein. Eur. J. Biochem. 225, 1203–1210. doi 10.1111/j.1432-1033.1994.1203b.x
  73. 73. Serre L., Vallée B., Bureaud N., Schoentgen F., Zelwer C. 1998. Crystal structure of the phosphatidylethanolamine-binding protein from bovine brain: A novel structural class of phospholipid-binding proteins. Structure. 6, 1255–1265. doi 10.1016/S0969-2126(98)00126-9
  74. 74. Vallée B.S., Tauc P., Brochon J., Maget‐Dana R., Lelièvre D., Metz‐Boutigue M., Bureaud N., Schoentgen F. 2001. Behaviour of bovine phosphatidylethanolamine‐binding protein with model membranes: Evidence of affinity for negatively charged membranes. Eur. J. Biochem. 268, 5831–5841. doi 10.1046/j.0014-2956.2001.02528.x
  75. 75. Bernier I., Tresca J.-P., Jollès P. 1986. Ligand-binding studies with a 23 kDa protein purified from bovine brain cytosol. Biochim. Biophys. Acta BBA – Protein Struct. Mol. Enzymol. 871, 19–23. doi 10.1016/0167-4838(86)90128-7
  76. 76. Hou S., Johnson S.E., Zhao M. 2015. A one‐step staining probe for phosphatidylethanolamine. ChemBioChem. 16, 1955–1960. doi 10.1002/cbic.201500127
  77. 77. Machaidze G., Ziegler A., Seelig J. 2002. Specific binding of Ro 09-0198 (Cinnamycin) to phosphatidylethanolamine: A thermodynamic analysis. Biochemistry. 41, 1965–1971. doi 10.1021/bi015841c
  78. 78. Hayashi F., Nagashima K., Terui Y., Kawamura Y., Matsumoto K., Itazaki H. 1990. The structure of PA48009: The revised structure of duramycin. J. Antibiot. (Tokyo). 43, 1421–1430. doi 10.7164/antibiotics.43.1421
  79. 79. Navarro J., Chabot J., Sherrill K., Aneja R., Zahler S.A., Racker E. 1985. Interaction of duramycin with artificial and natural membranes. Biochemistry. 24, 4645–4650. doi 10.1021/bi00338a025
  80. 80. Makino A., Baba T., Fujimoto K., Iwamoto K., Yano Y., Terada N., Ohno S., Sato S.B., Ohta A., Umeda M., Matsuzaki K., Kobayashi T. 2003. Cinnamycin (Ro 09-0198) promotes cell binding and toxicity by inducing transbilayer lipid movement. J. Biol. Chem. 278, 3204–3209. doi 10.1074/jbc.M210347200
  81. 81. Kay J.G., Fairn G.D. 2019. Distribution, dynamics and functional roles of phosphatidylserine within the cell. Cell Commun. Signal. 17, 126. doi 10.1186/s12964-019-0438-z
  82. 82. Vance J.E. 2018. Historical perspective: Phosphatidylserine and phosphatidylethanolamine from the 1800s to the present. J. Lipid Res. 59, 923–944. doi 10.1194/jlr.R084004
  83. 83. Zwaal R.F.A., Comfurius P., Bevers E.M. 1998. Lipid–protein interactions in blood coagulation. Biochim. Biophys. Acta BBA – Rev. Biomembr. 1376, 433–453. doi 10.1016/S0304-4157(98)00018-5
  84. 84. Leventis P.A., Grinstein S. 2010. The Distribution and function of phosphatidylserine in cellular membranes. Annu. Rev. Biophys. 39, 407–427. doi 10.1146/annurev.biophys.093008.131234
  85. 85. Fadok V.A., De Cathelineau A., Daleke D.L., Henson P.M., Bratton D.L. 2001. Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J. Biol. Chem. 276, 1071–1077. doi 10.1074/jbc.M003649200
  86. 86. Daleke D.L. 2007. Phospholipid flippases. J. Biol. Chem. 282, 821–825. doi 10.1074/jbc.R600035200
  87. 87. Cho W., Stahelin R. 2006. Membrane binding and subcellular targeting of C2 domains. Biochim. Biophys. Acta BBA - Mol. Cell Biol. Lipids. 1761, 838–849. doi 10.1016/j.bbalip.2006.06.014
  88. 88. Arikketh D., Nelson R., Vance J.E. 2008. Defining the importance of phosphatidylserine synthase-1 (PSS1). J. Biol. Chem. 283, 12888–12897. doi 10.1074/jbc.M800714200
  89. 89. Logue S.E., Elgendy M., Martin S.J. 2009. Expression, purification and use of recombinant annexin V for the detection of apoptotic cells. Nat. Protoc. 4, 1383–1395. doi 10.1038/nprot.2009.143
  90. 90. Yen T.-C., Wey S.-P., Liao C.-H., Yeh C.-H., Shen D.-W., Achilefu S., Wun T.-C. 2010. Measurement of the binding parameters of annexin derivative–erythrocyte membrane interactions. Anal. Biochem. 406, 70–79. doi 10.1016/j.ab.2010.06.048
  91. 91. Thiagarajan P., Tait J.F. 1990. Binding of annexin V/placental anticoagulant protein I to platelets. Evidence for phosphatidylserine exposure in the procoagulant response of activated platelets. J. Biol. Chem. 265, 17420–17423. doi 10.1016/S0021-9258(18)38177-8
  92. 92. Gerke V., Gavins F.N.E., Geisow M., Grewal T., Jaiswal J.K., Nylandsted J., Rescher U. 2024. Annexins—a family of proteins with distinctive tastes for cell signaling and membrane dynamics. Nat. Commun. 15, 1574. doi 10.1038/s41467-024-45954-0
  93. 93. Swairjo M.A., Concha N.O., Kaetzel M.A., Dedman J.R., Seaton B.A. 1995. Ca2+-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nat. Struct. Mol. Biol. 2, 968–974. doi 10.1038/nsb1195-968
  94. 94. Lemmon M.A. 2008. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9, 99–111. doi 10.1038/nrm2328
  95. 95. Tietjen G.T., Gong Z., Chen C.-H., Vargas E., Crooks J.E., Cao K.D., Heffern C.T.R., Henderson J.M., Meron M., Lin B., Roux B., Schlossman M.L., Steck T.L., Lee K.Y.C., Adams E.J. 2014. Molecular mechanism for differential recognition of membrane phosphatidylserine by the immune regulatory receptor Tim4. Proc. Natl. Acad. Sci. 111, doi 10.1073/pnas.1320174111
  96. 96. Okazaki S., Kato R., Uchida Y., Taguchi T., Arai H., Wakatsuki S. 2012. Structural basis of the strict phospholipid binding specificity of the pleckstrin homology domain of human evectin-2. Acta Crystallogr. D Biol. Crystallogr. 68, 117–123. doi 10.1107/S0907444911051626
  97. 97. Lin Y.-C., Chipot C., Scheuring S. 2020. Annexin-V stabilizes membrane defects by inducing lipid phase transition. Nat. Commun. 11, 230. doi 10.1038/s41467-019-14045-w
  98. 98. Stuart M.C.A., Reutelingsperger C.P.M., Frederik P.M. 1998. Binding of annexin V to bilayers with various phospholipid compositions using glass beads in a flow cytometer. Cytometry. 33, 414–419. doi 10.1002/(SICI)1097-0320(19981201)33:43.0.CO;2-H
  99. 99. Tobi D., Bahar I. 2005. Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state. Proc. Natl. Acad. Sci. 102, 18908–18913. doi 10.1073/pnas.0507603102
  100. 100. Gauer J.W., Knutson K.J., Jaworski S.R., Rice A.M., Rannikko A.M., Lentz B.R., Hinderliter A. 2013. Membrane modulates affinity for calcium ion to create an apparent cooperative binding response by Annexin a5. Biophys. J. 104, 2437–2447. doi 10.1016/j.bpj.2013.03.060
  101. 101. Shi J., Gilbert G.E. 2003. Lactadherin inhibits enzyme complexes of blood coagulation by competing for phospholipid-binding sites. Blood. 101, 2628–2636. doi 10.1182/blood-2002-07-1951
  102. 102. Carman C.V., Nikova D.N., Sakurai Y., Shi J., Novakovic V.A., Rasmussen J.T., Lam W.A., Gilbert G.E. 2023. Membrane curvature and PS localize coagulation proteins to filopodia and retraction fibers of endothelial cells. Blood Adv. 7, 60–72. doi 10.1182/bloodadvances.2021006870
  103. 103. Shi J., Shi Y., Waehrens L.N., Rasmussen J.T., Heegaard C.W., Gilbert G.E. 2006. Lactadherin detects early phosphatidylserine exposure on immortalized leukemia cells undergoing programmed cell death. Cytom. Part J. Int. Soc. Anal. Cytol. 69, 1193–1201. doi 10.1002/cyto.a.20345
  104. 104. Shi J., Heegaard C.W., Rasmussen J.T., Gilbert G.E. 2004. Lactadherin binds selectively to membranes containing phosphatidyl-l-serine and increased curvature. Biochim. Biophys. Acta BBA – Biomembr. 1667, 82–90. doi 10.1016/j.bbamem.2004.09.006
  105. 105. Miyagi A., Chipot C., Rangl M., Scheuring S. 2016. High-speed atomic force microscopy shows that annexin V stabilizes membranes on the second timescale. Nat. Nanotechnol. 11, 783–790. doi 10.1038/nnano.2016.89
  106. 106. Millington‐Burgess S.L., Harper M.T. 2022. Maintaining flippase activity in procoagulant platelets is a novel approach to reducing thrombin generation. J. Thromb. Haemost. 20, 989–995. doi 10.1111/jth.15641
  107. 107. Kaiser R., Escaig R., Kranich J., Hoffknecht M.-L., Anjum A., Polewka V., Mader M., Hu W., Belz L., Gold C., Titova A., Lorenz M., Pekayvaz K., Kääb S., Gaertner F., Stark K., Brocker T., Massberg S., Nicolai L. 2022. Procoagulant platelet sentinels prevent inflammatory bleeding through GPIIBIIIA and GPVI. Blood. 140, 121–139. doi 10.1182/blood.2021014914
  108. 108. Yeung T., Gilbert G.E., Shi J., Silvius J., Kapus A., Grinstein S. 2008. Membrane phosphatidylserine regulates surface charge and protein localization. Science. 319, 210–213. doi 10.1126/science.1152066
  109. 109. Dirvelyte E., Bujanauskiene D., Jankaityte E., Daugelaviciene N., Kisieliute U., Nagula I., Budvytyte R., Neniskyte U. 2023. Genetically encoded phosphatidylserine biosensor for in vitro, ex vivo and in vivo labelling. Cell. Mol. Biol. Lett. 28, 59. doi 10.1186/s11658-023-00472-7
  110. 110. Wen Y., Dick R.A., Feigenson G.W., Vogt V.M. 2016. Effects of membrane charge and order on membrane binding of the retroviral structural protein Gag. J. Virol. 90, 9518–9532. doi 10.1128/JVI.01102-16
  111. 111. Tremel S., Ohashi Y., Morado D.R., Bertram J., Perisic O., Brandt L.T.L., Von Wrisberg M.-K., Chen Z.A., Maslen S.L., Kovtun O., Skehel M., Rappsilber J., Lang K., Munro S., Briggs J.A.G., Williams R.L. 2021. Structural basis for VPS34 kinase activation by Rab1 and Rab5 on membranes. Nat. Commun. 12, 1564. doi 10.1038/s41467-021-21695-2
  112. 112. Mesmin B., Bigay J., Moser von Filseck J., Lacas-Gervais S., Drin G., Antonny B. 2013. A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell. 155, 830–843. doi 10.1016/j.cell.2013.09.056
  113. 113. Jiménez C., Portela R.A., Mellado M., Rodríguez-Frade J.M., Collard J., Serrano A., Martínez-A C., Avila J., Carrera A.C. 2000. Role of the Pi3k regulatory subunit in the control of actin organization and cell migration. J. Cell Biol. 151, 249–262. doi 10.1083/jcb.151.2.249
  114. 114. Gulluni F., Prever L., Li H., Krafcikova P., Corrado I., Lo W.-T., Margaria J.P., Chen A., De Santis M.C., Cnudde S.J., Fogerty J., Yuan A., Massarotti A., Sarijalo N.T., Vadas O., Williams R.L., Thelen M., Powell D.R., Schueler M., Wiesener M.S., Balla T., Baris H.N., Tiosano D., McDermott B.M., Perkins B.D., Ghigo A., Martini M., Haucke V., Boura E., Merlo G.R., Buchner D.A., Hirsch E. 2021. PI(3,4)P2-mediated cytokinetic abscission prevents early senescence and cataract formation. Science. 374, eabk0410. doi 10.1126/science.abk0410
  115. 115. Edwards-Hicks J., Apostolova P., Buescher J.M., Maib H., Stanczak M.A., Corrado M., Klein Geltink R.I., Maccari M.E., Villa M., Carrizo G.E., Sanin D.E., Baixauli F., Kelly B., Curtis J.D., Haessler F., Patterson A., Field C.S., Caputa G., Kyle R.L., Soballa M., Cha M., Paul H., Martin J., Grzes K.M., Flachsmann L., Mitterer M., Zhao L., Winkler F., Rafei-Shamsabadi D.A., Meiss F., Bengsch B., Zeiser R., Puleston D.J., O’Sullivan D., Pearce E.J., Pearce E.L. 2023. Phosphoinositide acyl chain saturation drives CD8+ effector T cell signaling and function. Nat. Immunol. 24, 516–530. doi 10.1038/s41590-023-01419-y
  116. 116. Dooley H.C., Razi M., Polson H.E.J., Girardin S.E., Wilson M.I., Tooze S.A. 2014. WIPI2 Links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12–5-16L1. Mol. Cell. 55, 238–252. doi 10.1016/j.molcel.2014.05.021
  117. 117. Luo X., Wasilko D.J., Liu Y., Sun J., Wu X., Luo Z.-Q., Mao Y. 2015. Structure of the Legionella virulence factor, SidC reveals a unique PI(4)P-specific binding domain essential for its targeting to the bacterial phagosome. PLOS Pathog. 11, e1004965. doi 10.1371/journal.ppat.1004965
  118. 118. Del Campo C.M., Mishra A.K., Wang Y.-H., Roy C.R., Janmey P.A., Lambright D.G. 2014. Structural Basis for PI(4)P-specific membrane recruitment of the Legionella pneumophila effector DrrA/SidM. Structure. 22, 397–408. doi 10.1016/j.str.2013.12.018
  119. 119. Roberts M.F., Khan H.M., Goldstein R., Reuter N., Gershenson A. 2018. Search and subvert: Minimalist bacterial phosphatidylinositol-specific phospholipase C Eenzymes. Chem. Rev. 118, 8435–8473. doi 10.1021/acs.chemrev.8b00208
  120. 120. Kutateladze T.G., Capelluto D.G.S., Ferguson C.G., Cheever M.L., Kutateladze A.G., Prestwich G.D., Overduin M. 2004. Multivalent mechanism of membrane insertion by the FYVE Domain. J. Biol. Chem. 279, 3050–3057. doi 10.1074/jbc.M309007200
  121. 121. Stahelin R.V., Burian A., Bruzik K.S., Murray D., Cho W. 2003. Membrane binding mechanisms of the PX Domains of NADPH Oxidase p40 and p47. J. Biol. Chem. 278, 14469–14479. doi 10.1074/jbc.M212579200
  122. 122. Lomize A.L., Pogozheva I.D., Lomize M.A., Mosberg H.I. 2007. The role of hydrophobic interactions in positioning of peripheral proteins in membranes. BMC Struct. Biol. 7, 44. doi 10.1186/1472-6807-7-44
  123. 123. Myeong J., Park C.-G., Suh B.-C., Hille B. 2021. Compartmentalization of phosphatidylinositol 4,5-bisphosphate metabolism into plasma membrane liquid-ordered/raft domains. Proc. Natl. Acad. Sci. 118, e2025343118. doi 10.1073/pnas.2025343118
  124. 124. Godi A., Campli A.D., Konstantakopoulos A., Tullio G.D., Alessi D.R., Kular G.S., Daniele T., Marra P., Lucocq J.M., Matteis M.A.D. 2004. FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat. Cell Biol. 6, 393–404. doi 10.1038/ncb1119
  125. 125. Hammond G.R.V., Schiavo G., Irvine R.F. 2009. Immunocytochemical techniques reveal multiple, distinct cellular pools of PtdIns4 P and PtdIns(4,5) P 2. Biochem. J. 422, 23–35. doi 10.1042/BJ20090428
  126. 126. Watt S.A., Kular G., Fleming I.N., Downes C.P., Lucocq J.M. 2002. Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase C δ1. Biochem. J. 363, 657–666. doi 10.1042/bj3630657
  127. 127. Hoshino F., Sakane F. 2020. Polyunsaturated fatty acid-containing phosphatidic acids selectively interact with L-lactate dehydrogenase A and induce its secondary structural change and inactivation. Biochim. Biophys. Acta BBA - Mol. Cell Biol. Lipids. 1865, 158768. doi 10.1016/j.bbalip.2020.158768
  128. 128. Zhukovsky M.A., Filograna A., Luini A., Corda D., Valente C. 2019. Phosphatidic acid in membrane rearrangements. FEBS Lett. 593, 2428–2451. doi 10.1002/1873-3468.13563
  129. 129. Liu Y., Su Y., Wang X. 2013. Phosphatidic acid-mediated signaling. pp. 159–176. In: Lipid-mediated Protein Signaling, (Capelluto, Daniel G. S. eds.) Springer Netherlands, Dordrecht.
  130. 130. Touret N., Paroutis P., Terebiznik M., Harrison R.E., Trombetta S., Pypaert M., Chow A., Jiang A., Shaw J., Yip C., Moore H.-P., Van Der Wel N., Houben D., Peters P.J., De Chastellier C., Mellman I., Grinstein S. 2005. Quantitative and Ddynamic assessment of the contribution of the ER to phagosome formation. Cell. 123, 157–170. doi 10.1016/j.cell.2005.08.018
  131. 131. Gagnon E., Duclos S., Rondeau C., Chevet E., Cameron P.H., Steele-Mortimer O., Paiement J., Bergeron J.J.M., Desjardins M. 2002. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell. 110, 119–131. doi 10.1016/S0092-8674(02)00797-3
  132. 132. Abe M., Makino A., Hullin-Matsuda F., Kamijo K., Ohno-Iwashita Y., Hanada K., Mizuno H., Miyawaki A., Kobayashi T. 2012. A Role for sphingomyelin-rich lipid domains in the accumulation of phosphatidylinositol-4,5-bisphosphate to the cleavage furrow during cytokinesis. Mol. Cell. Biol. 32, 1396–1407. doi 10.1128/MCB.06113-11
  133. 133. Hullin-Matsuda F., Murate M., Kobayashi T. 2018. Protein probes to visualize sphingomyelin and ceramide phosphoethanolamine. Chem. Phys. Lipids. 216, 132–141. doi 10.1016/j.chemphyslip.2018.09.002
  134. 134. Spiegel S., Foster D., Kolesnick R. 1996. Signal transduction through lipid second messengers. Curr. Opin. Cell Biol. 8, 159–167. doi 10.1016/S0955-0674(96)80061-5
  135. 135. Hannun Y.A. 1996. Functions of ceramide in coordinating cellular responses to stress. Science. 274, 1855–1859. doi 10.1126/science.274.5294.1855
  136. 136. Hannun Y. 1995. Ceramide: An intracellular signal for apoptosis. Trends Biochem. Sci. 20, 73–77. doi 10.1016/S0968-0004(00)88961-6
  137. 137. Edidin M. 2003. The state of lipid rafts: From model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257–283. doi 10.1146/annurev.biophys.32.110601.142439
  138. 138. Simons K., Ikonen E. 1997. Functional rafts in cell membranes. Nature. 387, 569–572. doi 10.1038/42408
  139. 139. Haan L.D., Hirst T.R. 2004. Cholera toxin: A paradigm for multi-functional engagement of cellular mechanisms (Review). Mol. Membr. Biol. 21, 77–92. doi 10.1080/09687680410001663267
  140. 140. Yamaji A., Sekizawa Y., Emoto K., Sakuraba H., Inoue K., Kobayashi H., Umeda M. 1998. Lysenin, a novel sphingomyelin-specific binding protein. J. Biol. Chem. 273, 5300–5306. doi 10.1074/jbc.273.9.5300
  141. 141. Ishitsuka R., Yamaji-Hasegawa A., Makino A., Hirabayashi Y., Kobayashi T. 2004. A lipid-specific toxin reveals heterogeneity of sphingomyelin-containing membranes. Biophys. J. 86, 296–307. doi 10.1016/S0006-3495(04)74105-3
  142. 142. Bakrač B., Gutiérrez-Aguirre I., Podlesek Z., Sonnen A.F.-P., Gilbert R.J.C., Maček P., Lakey J.H., Anderluh G. 2008. Molecular determinants of sphingomyelin specificity of a eukaryotic pore-forming toxin. J. Biol. Chem. 283, 18665–18677. doi 10.1074/jbc.M708747200
  143. 143. Belmonte G., Pederzolli C., Maček P., Menestrina G. 1993. Pore formation by the sea anemone cytolysin equinatoxin II in red blood cells and model lipid membranes. J. Membr. Biol. 131, 11–22. doi 10.1007/BF02258530
  144. 144. Kristan K., Podlesek Z., Hojnik V., Gutiérrez-Aguirre I., Gunčar G., Turk D., González-Mañas J.M., Lakey J.H., Maček P., Anderluh G. 2004. Pore formation by Equinatoxin, a eukaryotic pore-forming toxin, requires a flexible N-terminal region and a stable β-sandwich. J. Biol. Chem. 279, 46509–46517. doi 10.1074/jbc.M406193200
  145. 145. Skočaj M., Resnik N., Grundner M., Ota K., Rojko N., Hodnik V., Anderluh G., Sobota A., Maček P., Veranič P., Sepčić K. 2014. Tracking cholesterol/sphingomyelin-rich membrane domains with the ostreolysin A-mCherry protein. PLoS ONE. 9, e92783. doi 10.1371/journal.pone.0092783
  146. 146. Ikonen E. 2008. Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 9, 125–138. doi 10.1038/nrm2336
  147. 147. Maxfield F.R., Tabas I. 2005. Role of cholesterol and lipid organization in disease. Nature. 438, 612–621. doi 10.1038/nature04399
  148. 148. Yeagle P.L. 1991. Modulation of membrane function by cholesterol. Biochimie. 73, 1303–1310. doi 10.1016/0300-9084(91)90093-G
  149. 149. Yeagle P.L. 1985. Cholesterol and the cell membrane. Biochim. Biophys. Acta BBA - Rev. Biomembr. 822, 267–287. doi 10.1016/0304-4157(85)90011-5
  150. 150. Demel R.A., Bruckdorfer K.R., Van Deenen L.L.M. 1972. The effect of sterol structure on the permeability of lipomes to glucose, glycerol and Rb+. Biochim. Biophys. Acta BBA - Biomembr. 255, 321–330. doi 10.1016/0005-2736(72)90031-4
  151. 151. Issop L., Rone M.B., Papadopoulos V. 2013. Organelle plasticity and interactions in cholesterol transport and steroid biosynthesis. Mol. Cell. Endocrinol. 371, 34–46. doi 10.1016/j.mce.2012.12.003
  152. 152. Russell D.W. 2003. The enzymes, regulation, and genetics of bile Acid synthesis. Annu. Rev. Biochem. 72, 137–174. doi 10.1146/annurev.biochem.72.121801.161712
  153. 153. Lingwood D., Simons K. 2010. Lipid rafts as a membrane-organizing principle. Science. 327, 46–50. doi 10.1126/science.1174621
  154. 154. Fantini J., Barrantes F.J. 2013. How cholesterol interacts with membrane proteins: An exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front. Physiol. 4, doi 10.3389/fphys.2013.00031
  155. 155. Levitan I., Singh D.K., Rosenhouse-Dantsker A. 2014. Cholesterol binding to ion channels. Front. Physiol. 5, doi 10.3389/fphys.2014.00065
  156. 156. Jiang Q.-X. 2019. Cholesterol-dependent gating effects on ion channels. pp. 167–190. In: Cholesterol Modulation of Protein Function, (Rosenhouse-Dantsker, Avia and Bukiya, Anna N. eds.) Springer International Publishing, Cham.
  157. 157. Kiriakidi S., Kolocouris A., Liapakis G., Ikram S., Durdagi S., Mavromoustakos T. 2019. Effects of cholesterol on GPCR function: Insights from computational and experimental studies. Adv. Exp. Med. Biol. 1135, 89–103. doi 10.1007/978-3-030-14265-0_5
  158. 158. Francis K.R., Ton A.N., Xin Y., O’Halloran P.E., Wassif C.A., Malik N., Williams I.M., Cluzeau C.V., Trivedi N.S., Pavan W.J., Cho W., Westphal H., Porter F.D. 2016. Modeling Smith-Lemli-Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/β-catenin defects in neuronal cholesterol synthesis phenotypes. Nat. Med. 22, 388–396. doi 10.1038/nm.4067
  159. 159. Sheng R., Kim H., Lee H., Xin Y., Chen Y., Tian W., Cui Y., Choi J.-C., Doh J., Han J.-K., Cho W. 2014. Cholesterol selectively activates canonical Wnt signalling over non-canonical Wnt signalling. Nat. Commun. 5, 4393. doi 10.1038/ncomms5393
  160. 160. Sheng R., Chen Y., Yung Gee H., Stec E., Melowic H.R., Blatner N.R., Tun M.P., Kim Y., Källberg M., Fujiwara T.K., Hye Hong J., Pyo Kim K., Lu H., Kusumi A., Goo Lee M., Cho W. 2012. Cholesterol modulates cell signaling and protein networking by specifically interacting with PDZ domain-containing scaffold proteins. Nat. Commun. 3, 1249. doi 10.1038/ncomms2221
  161. 161. Liu S.-L., Sheng R., Jung J.H., Wang L., Stec E., O’Connor M.J., Song S., Bikkavilli R.K., Winn R.A., Lee D., Baek K., Ueda K., Levitan I., Kim K.-P., Cho W. 2017. Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nat. Chem. Biol. 13, 268–274. doi 10.1038/nchembio.2268
  162. 162. Orci L., Perrelet A., Montesano R. 1983. Differential filipin labeling of the luminal membranes lining the pancreatic acinus. J. Histochem. Cytochem. 31, 952–955. doi 10.1177/31.7.6854007
  163. 163. Gimpl G., Gehrig-Burger K. 2007. Cholesterol reporter molecules. Biosci. Rep. 27, 335–358. doi 10.1007/s10540-007-9060-1
  164. 164. Wilhelm L.P., Voilquin L., Kobayashi T., Tomasetto C., Alpy F. 2019. Intracellular and plasma membrane cholesterol labeling and quantification using filipin and GFP-D4. pp. 137–152. In: Intracellular Lipid Transport, (Drin, Guillaume eds.) Springer New York, New York, NY.
  165. 165. Endapally S., Infante R.E., Radhakrishnan A. 2019. Monitoring and modulating intracellular cholesterol trafficking using ALOD4, a cholesterol-binding protein. pp. 153–163. In: Intracellular Lipid Transport, (Drin, Guillaume eds.) Springer New York, New York, NY.
  166. 166. Tweten R.K., Hotze E.M., Wade K.R. 2015. The unique molecular choreography of giant pore formation by the cholesterol-dependent cytolysins of cram-positive bacteria. Annu. Rev. Microbiol. 69, 323–340. doi 10.1146/annurev-micro-091014-104233
  167. 167. Rossjohn J., Feil S.C., McKinstry W.J., Tweten R.K., Parker M.W. 1997. Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell. 89, 685–692. doi 10.1016/S0092-8674(00)80251-2
  168. 168. Das A., Goldstein J.L., Anderson D.D., Brown M.S., Radhakrishnan A. 2013. Use of mutant125 I-Perfringolysin O to probe transport and organization of cholesterol in membranes of animal cells. Proc. Natl. Acad. Sci. 110, 10580–10585. doi 10.1073/pnas.1309273110
  169. 169. Im Y.J., Raychaudhuri S., Prinz W.A., Hurley J.H. 2005. Structural mechanism for sterol sensing and transport by OSBP-related proteins. Nature. 437, 154–158. doi 10.1038/nature03923
  170. 170. De Saint-Jean M., Delfosse V., Douguet D., Chicanne G., Payrastre B., Bourguet W., Antonny B., Drin G. 2011. Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers. J. Cell Biol. 195, 965–978. doi 10.1083/jcb.201104062
  171. 171. Naito T., Ercan B., Krshnan L., Triebl A., Koh D.H.Z., Wei F.-Y., Tomizawa K., Torta F.T., Wenk M.R., Saheki Y. 2019. Movement of accessible plasma membrane cholesterol by the GRAMD1 lipid transfer protein complex. eLife. 8, e51401. doi 10.7554/eLife.51401
  172. 172. Ercan B., Naito T., Koh D.H.Z., Dharmawan D., Saheki Y. 2021. Molecular basis of accessible plasma membrane cholesterol recognition by the GRAM domain of GRAMD1b. EMBO J. 40, e106524. doi 10.15252/embj.2020106524
  173. 173. Kay J.G., Koivusalo M., Ma X., Wohland T., Grinstein S. 2012. Phosphatidylserine dynamics in cellular membranes. Mol. Biol. Cell. 23, 2198–2212. doi 10.1091/mbc.e11-11-0936
  174. 174. Liu S.-L., Wang Z.-G., Hu Y., Xin Y., Singaram I., Gorai S., Zhou X., Shim Y., Min J.-H., Gong L.-W., Hay N., Zhang J., Cho W. 2018. Quantitative lipid imaging reveals a new signaling function of phosphatidylinositol-3,4-bisphophate: Isoform- and site-specific activation of Akt. Mol. Cell. 71, 1092-1104.e5. doi 10.1016/j.molcel.2018.07.035
  175. 175. Quijano-Rubio A., Yeh H.-W., Park J., Lee H., Langan R.A., Boyken S.E., Lajoie M.J., Cao L., Chow C.M., Miranda M.C., Wi J., Hong H.J., Stewart L., Oh B.-H., Baker D. 2021. De novo design of modular and tunable protein biosensors. Nature. 591, 482–487. doi 10.1038/s41586-021-03258-z
  176. 176. Yang J.-M., Chi W.-Y., Liang J., Takayanagi S., Iglesias P.A., Huang C.-H. 2021. Deciphering cell signaling networks with massively multiplexed biosensor barcoding. Cell. 184, 6193-6206.e14. doi 10.1016/j.cell.2021.11.005
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека