- PII
- S0233475525010025-1
- DOI
- 10.31857/S0233475525010025
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 42 / Issue number 1
- Pages
- 20-30
- Abstract
- Human serum albumin (HSA) is an endogenous inhibitor of angiotensin-I-converting enzyme (ACE), an integral membrane protein that catalyzes the cleavage of angiotensin I decapeptide to angiotensin II octapeptide. By inhibiting ACE, HSA plays a key role in the renin-angiotensin-aldosterone system (RAAS). However, little is known about the mechanism of interaction between these proteins; the structure of the HSA–ACE complex has not yet been obtained experimentally. The purpose of the present work is to investigate the interaction of HSA with ACE in silico. Ten possible HSA–ACE complexes were obtained by the procedure of macromolecular docking. Based on the number of steric and polar contacts between the proteins, the leading complex was selected, the stability of which was then tested by molecular dynamics (MD) simulation. An analysis of the possible effect of modifications in the albumin molecule on its interaction with ACE was performed. A comparative analysis of the structure of the HSA–ACE complex obtained by us, was performed with the known crystal structure of the HSA complex with neonatal Fc receptor (FcRn). The molecular modeling data outline the direction for further study of the mechanisms of HSA–ACE interaction in vitro. Information about these mechanisms will help in the design and improvement of pharmacotherapy aimed at modulating the physiological activity of ACE.
- Keywords
- сывороточный альбумин ангиотензин-I-превращающий фермент ренин-ангиотензин-альдостероновая система точечные мутации молекулярное моделирование
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 18
References
- 1. Whelton P.K., Carey R.M., Aronow W.S., Casey D.E. Jr., Collins K.J., Dennison Himmelfarb C., DePalma S.M., Gidding S., Jamerson K.A., Jones D.W., MacLaughlin E.J., Muntner P., Ovbiagele B., Smith S.C. Jr., Spencer C.C., Stafford R.S., Taler S.J., Thomas R.J., Williams K.A. Sr., Williamson J.D., Wright J.T. Jr. 2018. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American college of cardiology/American heart association task force on clinical practice guidelines. J. Am. Coll. Cardiol. 71 (19), e127–e248. doi 10.1016/j.jacc.2017.11.006
- 2. Howard G., Downward G., Bowie D. 2001. Human serum albumin induced hypotension in the postoperative phase of cardiac surgery. Anaesth. Intensive Care 29 (6), 591–594. doi 10.1177/0310057X0102900604
- 3. Oda E. 2014. Decreased serum albumin predicts hypertension in a Japanese health screening population. Intern. Med. 53 (7), 655–660. doi 10.2169/internalmedicine.53.1894
- 4. Klauser R.J., Robinson C.J., Marinkovic D.V., Erdös E.G. 1979. Inhibition of human peptidyl dipeptidase (angiotensin I converting enzyme: kininase II) by human serum albumin and its fragments. Hypertension 1 (3), 281–286. doi 10.1161/01.hyp.1.3.281
- 5. Fagyas M., Úri K., Siket I.M., Fülöp G.Á., Csató V., Daragó A., Boczán J., Bányai E., Szentkirályi I.E., Maros T.M., Szerafin T., Édes I., Papp Z., Tóth A. 2014. New perspectives in the renin-angiotensin-aldosterone system (RAAS) II: Albumin suppresses angiotensin converting enzyme (ACE) activity in human. PLoS One 9 (4), e87844. doi 10.1371/journal.pone.0087844
- 6. Danilov S.M., Jain M.S., Petukhov P.A, Kurilova O.V., Ilinsky V.V., Trakhtman P.E., Dadali E.L., Samokhodskaya L.M., Kamalov A.A., Kost O.A. 2023. Blood ACE phenotyping for personalized medicine: Revelation of patients with conformationally altered ACE. Biomedicines 11 (2), 534. doi 10.3390/biomedicines11020534
- 7. Kozuch A.J., Petukhov P.A., Fagyas M., Popova I.A., Lindeblad M.O., Bobkov A.P., Kamalov A.A., Toth A., Dudek S.M., Danilov S.M. 2023. Urinary ACE phenotyping as a research and diagnostic tool: Identification of sex-dependent ACE immunoreactivity. Biomedicines 11 (3), 953. doi 10.3390/biomedicines11030953
- 8. Danilov S.M., Adzhubei I.A., Kozuch A.J., Petukhov P.A., Popova I.A., Choudhury A., Sengupta D., Dudek S.M. 2024. Carriers of heterozygous loss-of-function ACE mutations are at risk for Alzheimer's disease. Biomedicines 12 (1), 162. doi 10.3390/biomedicines12010162
- 9. Enyedi E.E., Petukhov P.A., Kozuch A.J., Dudek S.M., Toth A., Fagyas M., Danilov S.M. 2024. ACE phenotyping in human blood and tissues: Revelation of ACE outliers and sex differences in ACE sialylation. Biomedicines 1 (5), 940. doi 10.3390/biomedicines12050940
- 10. Kragh-Hansen U. 1990. Structure and ligand binding properties of human serum albumin. Dan. Med. Bull. 37 (1), 57–84.
- 11. Kragh-Hansen U., Brennan S.O., Minchiotti L., Galliano M. 1994. Modified high-affinity binding of Ni 2+ , Ca 2+ and Zn 2+ to natural mutants of human serum albumin and proalbumin. Biochem. J. 301 (Pt 1), 217–223. doi 10.1042/bj3010217
- 12. Kragh-Hansen U., Saito S., Nishi K., Anraku M., Otagiri M. 2005. Effect of genetic variation on the thermal stability of human serum albumin. Biochim. Biophys. Acta. 1747 (1), 81–88. doi 10.1016/j.bbapap.2004.09.025
- 13. Kragh-Hansen U., Minchiotti L., Galliano M., Peters T. Jr. 2013. Human serum albumin isoforms: Genetic and molecular aspects and functional consequences. Biochim. Biophys. Acta. 1830 (12), 5405–5417. doi 10.1016/j.bbagen.2013.03.026
- 14. Caridi G., Lugani F., Angeletti A., Campagnoli M., Galliano M., Minchiotti L. 2022. Variations in the human serum albumin gene: Molecular and functional dspects. Int. J. Mol. Sci. 23 (3), 1159. doi 10.3390/ijms23031159
- 15. Hein K.L., Kragh-Hansen U., Morth J.P., Jeppesen M.D., Otzen D., Møller J.V., Nissen P. 2010. Crystallographic analysis reveals a unique lidocaine binding site on human serum albumin. J. Struct. Biol. 171 (3), 353–360. doi 10.1016/j.jsb.2010.03.014
- 16. Lubbe L., Sewell B.T., Woodward J.D., Sturrock E.D. 2022. Cryo-EM reveals mechanisms of angiotensin I-converting enzyme allostery and dimerization. EMBO J. 41 (16), e110550. doi 10.15252/embj.2021110550
- 17. Humphrey W., Dalke A., Schulten K. 1996. VMD: Visual molecular dynamics. J. Mol. Graph. 14 (1), 33–38. doi 10.1016/0263-7855(96)00018-5
- 18. Singh A., Copeland M.M., Kundrotas P.J., Vakser I.A. 2024. GRAMM Web server for protein docking. Methods Mol. Biol. 2714, 101–112. doi 10.1007/978-1-0716-3441-7_5
- 19. Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. 2015. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25. doi 10.1016/j.softx.2015.06.001
- 20. Foloppe N., MacKerell A.D. Jr. 2000. All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem. 21, 86–104. doi 10.1002/(SICI)1096-987X(20000130)21:2%3C86::AID-JCC2%3E3.0.CO,2-G
- 21. Jorgensen W.L. 1981. Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water. J. Am. Chem. Soc. 103, 335–340.
- 22. Bussi G., Zykova-Timan T., Parrinello M. 2009. Isothermal-isobaric molecular dynamics using stochastic velocity rescaling. J. Chem. Phys. 130 (7), 074101. doi 10.1063/1.3073889
- 23. Parrinello M., Rahman A. 1980. Crystal structure and pair potentials: A molecular-dynamics study. Phys. Rev. Lett. 45, 1196–1199. doi 10.1103/PhysRevLett.45.1196
- 24. Darden T., York D., Pedersen L. 1993. Particle mesh Ewald: An N∙log(N) method for Ewald sums in large systems. J. Chem. Phys. 3, 10089–10092. doi 10.1063/1.464397
- 25. Hess B., Bekker H., Berendsen H.J.C., Fraaije J.G.E.M. 1997. LINCS: A linear constraint solver for molecular simulations. J. Comp. Chem. 18, 1463–1473. doi 10.1002/(SICI)1096-987X(199709)18:12%3C1463::AID-JCC4%3E3.0.CO;2-H
- 26. He X.M., Carter D.C. 1992. Atomic structure and chemistry of human serum albumin. Nature 358, 209–215. doi 10.1038/358209a0
- 27. Fasano M., Curry S., Terreno E., Galliano M., Fanali G., Narciso P., Notari S., Ascenzi P. 2005. The extraordinary ligand binding properties of human serum albumin. IUBMB Life. 57, 787–796. doi 10.1080/15216540500404093
- 28. Sudlow G., Birkett D.J., Wade D.N. 1976. Further characterization of specific drug binding sites on human serum albumin. Mol. Pharmacol. 12 (6), 1052–1061.
- 29. Belinskaia D.A., Voronina P.A., Vovk M.A., Shmurak V.I., Batalova A.A., Jenkins R.O., Goncharov N.V. 2021. Esterase activity of serum albumin studied by 1H NMR spectroscopy and molecular modelling. Int. J. Mol. Sci. 22 (19), 10593. doi 10.3390/ijms221910593
- 30. Nakashima F., Shibata T., Kamiya K., Yoshitake J., Kikuchi R., Matsushita T., Ishii I., Giménez-Bastida J.A., Schneider C., Uchida K. 2018. Structural and functional insights into S-thiolation of human serum albumins. Sci. Rep. 8 (1), 932. doi 10.1038/s41598-018-19610-9
- 31. Qiu H.Y., Hou N.N., Shi J.F., Liu Y.P., Kan C.X., Han F., Sun X.D. 2021. Comprehensive overview of human serum albumin glycation in diabetes mellitus. World J. Diabetes. 12, 1057–1069. doi 10.4239/wjd.v12.i7.1057
- 32. Wei L., Alhenc-Gelas F., Corvol P., Clauser E. 1991. The two homologous domains of human angiotensin I-converting enzyme are both catalytically active. J. Biol. Chem. 266 (14), 9002–9008.
- 33. Wei L., Clauser E., Alhenc-Gelas F., Corvol P. 1992. The two homologous domains of human angiotensin I-converting enzyme interact differently with competitive inhibitors. J. Biol. Chem. 267 (19), 13398–13405.
- 34. Jaspard E., Wei L., Alhenc-Gelas F. 1993. Differences in the properties and enzymatic specificities of the two active sites of angiotensin I-converting enzyme (kininase II). Studies with bradykinin and other natural peptides. J. Biol. Chem. 268 (13), 9496–9503.
- 35. Кугаевская Е.В. 2005. Ангиотензин-превращающий фермент. Доменная структура и свойства. Биомед. хим. 51 (6), 567–580.
- 36. Cozier G.E., Lubbe L., Sturrock E.D., Acharya K.R. 2020. ACE-domain selectivity extends beyond direct interacting residues at the active site. Biochem. J. 477 (7), 1241–1259. doi 10.1042/BCJ20200060
- 37. Tan K.P., Singh K., Hazra A., Madhusudhan M.S. 2020. Peptide bond planarity constrains hydrogen bond geometry and influences secondary structure conformations. Curr. Res. Struct. Biol. 3, 1–8. doi 10.1016/j.crstbi.2020.11.002
- 38. Li S., Chesnutt D.B. 1985. Intramolecular van der Waals interactions and chemical shifts: A model for β- and γ-effects. Magn. Reson. Chem. 23, 625–638.
- 39. Belinskaia D.A., Voronina P.A., Shmurak V.I., Jenkins R.O., Goncharov N.V. 2021. Serum albumin in health and disease: Esterase, antioxidant, transporting and signaling properties. Int. J. Mol. Sci. 22 (19), 10318. doi 10.3390/ijms221910318
- 40. Stewart A.J., Blindauer C.A., Berezenko S., Sleep D., Tooth D., Sadler P.J. 2005. Role of Tyr84 in controlling the reactivity of Cys34 of human albumin. FEBS J. 272 (2), 353–362. doi 10.1111/j.1742-4658.2004.04474.x
- 41. Leblanc Y., Berger M., Seifert A., Bihoreau N., Chevreux G. 2019. Human serum albumin presents isoform variants with altered neonatal Fc receptor interactions. Protein Sci. 28 (11), 1982–1992. doi 10.1002/pro.3733
- 42. Wagner M.C., Myslinski J., Pratap S., Flores B., Rhodes G., Campos-Bilderback S.B., Sandoval R.M., Kumar S., Patel M., Ashish, Molitoris B.A. 2016. Mechanism of increased clearance of glycated albumin by proximal tubule cells. Am. J. Physiol. Renal Physiol. 310 (10), F1089–1102. doi 10.1152/ajprenal.00605.2015
- 43. Oganesyan V., Damschroder M.M., Cook K.E., Li Q., Gao C., Wu H., Dall'Acqua W.F. 2014. Structural insights into neonatal Fc receptor-based recycling mechanisms. J. Biol. Chem. 289 (11), 7812–7824. doi 10.1074/jbc.M113.537563
- 44. Sand K.M., Bern M., Nilsen J., Dalhus B., Gunnarsen K.S., Cameron J., Grevys A., Bunting K., Sandlie I., Andersen J.T. 2014. Interaction with both domain I and III of albumin is required for optimal pH-dependent binding to the neonatal Fc receptor (FcRn). J. Biol. Chem. 289 (50), 34583–34594. doi 10.1074/jbc.M114.587675
- 45. Ascenzi P., Bocedi A., Notari S., Fanali G., Fesce R., Fasano M. 2006. Allosteric modulation of drug binding to human serum albumin. Mini Rev. Med. Chem. 6, 483–489. doi 10.2174/138955706776361448
- 46. Ascenzi P., Fasano M. 2010. Allostery in a monomeric protein: The case of human serum albumin. Biophys. Chem. 48, 16–22. doi 10.1016/j.bpc.2010.03.001