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ВВЕДЕНИЕ

Физические свойства липидных мембран не-
однородны по их толщине. Одной из важных 
характеристик липидного бислоя является про-
филь латерального давления, т.е. зависимость 
локального латерального давления от коорди-
наты z, перпендикулярной плоскости невозму-
щенной мембраны. При изменении формы мем-
браны, например при поперечном изгибе, изме-
няется также профиль латерального давления. 
Ранее автором [1] была получена добавка к про-
филю латерального давления за счет кривизны 
Пt

(1)(z, J). Данная величина была получена с по-
мощью теории возмущений по малому параметру 
L0J, где L0 – невозмущенная толщина монослоя, 
J – кривизна. Полученная формула для добавки 
к профилю латерального давления зависит от ва-
риации площади, приходящейся на поверхности 
монослоя на липидную молекулу, δA(z, J), где z – 
координата вдоль толщины монослоя. Также при 
получении добавки к профилю давления было 
учтено условие локальной объемной несжима-
емости липидного материала при деформации 
изгиба: AL = const (гидрофобный хвост липида 
занимает цилиндрический объем площадью по-
перечного сечения A длины L). В данной работе 

был произведен уточняющий расчет и вычисле-
на добавка к профилю латерального давления 
с помощью ренорм-группы.

Вычисленный профиль латерального давле-
ния качественно согласуется с  профилем, по-
лученным методом молекулярной динамики [2]. 
В работе [2] с помощью молекулярной динами-
ки была показана 3D-картина изменения дав-
ления в  везикуле. Авторы получили распреде-
ление pN(z) нормального давления по толщине 
мембраны, а  именно pN(z)  =  prr(z), где prr(z)  – 
распределение давления в радиальных коорди-
натах, причем pN(z) мало по сравнению с pL(z), 
где pL(z) – латеральное давление. Также в рабо-
те [2] было определено, что профиль давления 
ΔP = pL – pN; ΔP = Пt(z) в обозначениях настоя-
щей работы.

Стоит отметить, что вычисленный в данной 
работе профиль латерального давления согла-
суется с профилем pL(z), рассчитанным в рабо-
те [2], где также было показано, что pN(z) → 0 
и pN(z) << pL(z). 

Другие характеристики, в частности модуль 
Гаусса и  модуль кручения, будут вычисляться 
в предположении pN >> pL. Дело в том, что эти 
деформации возникают лишь при изменении 
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толщины мембраны, и вариация толщины мо-
нослоя δL приводит к ненулевому нормальному 
давлению, вследствие чего обычно выполняется 
следующее условие: pN >> pL. 

В дальнейшем предполагается вычислить мо-
дуль Гаусса, выразив его через pN и pL, как вто-
рой момент давления [3] (здесь pL(z) – латераль-
ное давление в обозначениях работы [2]). Учи-
тывая вклад в свободную энергию деформации 
кручения в форме Франка ½K2(n ∙ rotn)2, можно 
вычислить модуль кручения как второй момент 
нормального давления

	 K = z p z dztw N

L
2

0

0

� �� . � (1)

МЕТОДЫ

Как было сказано во введении, распределение 
нормального давления pN(z) для недеформиро-
ванной мембраны приближено к нулю. А имен-
но, для вывода формулы для pN(z) надо учесть 
выражение для свободной энергии (формула 
(6) в работе [1]) и выражение для вариации эн-
тропийного коэффициента δB z( ) (формула (16) 
в  [1]). При выводе выражения для pN(z) была 

учтена свободная энергия деформированной 

мембраны F kT E En
n

n= + +∑ ln( )( ) ( )0 1 const , а так-

же pN(z)=− δ
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L
(z). Сначала вычисляется первая 

вариационная производная свободной энергии 
по толщине монослоя (см. формулу (21) в [1]):
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Теперь после подстановки полученного раз-
ложения в ряд в формулу для первой вариаци-
онной производной свободной энергии, можно 
получить:
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В полученном выражении выделим только 
слагаемые в первом порядке по кривизне (учи-
тывая формулы (16) и (18) в [1]). После, диффе-
ренцируя еще раз по δL, получили вторую вари-
ационную производную свободной энергии: 
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В итоге выражение для профиля нормального 
давления имеет вид:
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где было учтено l = L/L0, l – относительное из-
менение толщины мембраны, а также k – посто-
янная Больцмана, T – абсолютная температура,

R zn
0 2( ) ( )  – собственные функции размерности 

R z =
Ln

0 2 1( ) ( )
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
 [ ] , En
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1( )  – собственные значе-

ния оператора энергии, учитывающего изгиб 
липидной цепи и  энтропийное отталкивание 

между соседними цепями E =
K

L
b + cn

f
n
40

0
4

( ) ⋅ ( ) [1]; 

суммирование ведется от n = 1 to ∞, b = L4B/Kf – 
безразмерный коэффициент, Kf – изгибная 
жесткость липидной цепи, B – коэффициент 
энтропийного отталкивания липидных цепей 
между собой, l – относительное изменение тол-
щины мембраны, l = L/L0. Можно записать фор-
мулу (2) в безразмерном виде для собственных 
значений и энтропийного потенциала (см. фор-
мулу (4) в [1] – выражение для сn и собственных 
функций): 
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Визуальная картина pN приведена на рис. 1. 
Далее подставим в формулу (1) формулу (2) 

и получим модуль кручения:
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Здесь под интегралом стоит z2, если Ktw  рас-
считывается в случае бислойной мембраны, и z, 
если Ktw  рассчитывается для одного верхнего мо-
нослоя мембраны.
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 приведены в Приложении. Эти формулы 

описывают утоньшение мембраны при деформа-
ции и, как следствие, ненулевой модуль круче-
ния [4]. Дело в том, что в смектической мембра-
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малы, что, согласно формуле (2), 

должно приводить к малому нормальному дав-
лению и, как следствие, нулевому модулю кру-
чения – см. формулу (3).

Однако если происходит уменьшение толщины 
мембраны с коэффициентом утоньшения l = L/L0, 
тогда выполняется следующее условие для вычис-

ления производных B =
K

L
bf

4
 (чтобы получить 

значения модуля кручения для смектика, нужно 
взять только или вторую производную b по l или 
первую производную b по l в формуле (3)):
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При растяжении в биополимерах может воз-
никать деформация кручения. Эта идея подроб-
но доказана в работе [5]. А именно, изменение 
толщины монослоя приводит к появлению кру-
чения, хиральности и, как следствие, наклона. 
В работе [5] вычислены длины нескольких поли-
меров в случае кручения биополимера относи-
тельно его первоначального состояния. Получе-
ны величины модуля наклона Kθ  = 0,031 Н/м для 
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Рис. 1. Профиль нормального давления в мембране из DPPC с толщиной монослоя L0 = 1.5 нм.
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диарахидинилфосфатидилхолина (DAPC) (по-
верхностное натяжение в межслойной области 
γ = 0.04 Н/м и Т = 343K). Для дипальмитоилфос-
фатидилхолина (DPPC) при поверхностном на-
тяжении границы раздела вода–липидные хвосты 
γ = 0.03 Н/м и Т = 320K получено Kθ= 0.04 Н/м, 
что хорошо согласуется с  работой  [6]. Для ди-
лауроилфосфатидилхолина (DLPC) получено 
Kθ  = 0.060 Н/м, при γ = 0.03 Н/м.

Далее рассмотрены некоторые аспекты, свя-
занные с модулем Гаусса KG.

Согласно теореме Гаусса–Боне, гауссова кри-
визна поверхности является топологическим ин-
вариантом. Соответственно, гауссова кривизна 
дает постоянный вклад в энергию, если тополо-
гия поверхности не изменяется. Однако изме-
нение топологии сопровождается изменением 
энергии, связанной с гауссовой кривизной. Для 
вычисления этой энергии необходимо знать ве-
личину модуля Гаусса. Изменения топологии 
возникают вследствие нормальной и латераль-
ной деформации, например при адресной до-
ставке какого-либо вещества, в частности ане-
стетика или лекарства, к клетке и внутрь клет-
ки. Модули Ktilt (описывают деформацию изгиба 
в  латеральном направлении)и Ktw появляются 
в топологии кручения. Здесь необходимо учесть, 
в каком направлении происходит деформация. 
Например, латеральное направление учтено че-
рез кручение Ktw. Продольный изгиб в мембра-
нах не возникает вообще.

Необходимо отметить, что согласно [3] модуль 
Гаусса есть второй момент разницы профилей 
давления:

	 K = z p z p z dzG L N
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Подставим правую часть уравнения (1) в урав-
нение (6), получим
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Расчеты по приведенным здесь формулам по-
казали, что для твист-бэнд нематика, хирально-
го смектика и холестерика выполняется условие 
|pN(z)| >  |pL(z)|, тогда как для смектической бис-
лойной мембраны |pN(z)|  <  |pL(z)|. В  случае хи-
рального смектика, твист-бэнд нематика и т.п. 
вместо липидов рассматривается мембрана из 
полимерных стержней (polymer rod) различной 
длины. Для таких мембран было получено, что 
pN >> pL и, соответственно, получается KG > 0. 

При изменении топологии, происходящем при 
делении мембран, гауссова энергия изменяется 
как 

	 ∆ ∆F = Kfission G−4 .� (8)

В этой формуле обозначена энергия новой 
фазы. Согласно (8) (при K >G 0) и (5), образу-
ются новые устойчивые фазы: твист-бенд нема-
тик, хиральный смектик, холестерик. Положи-
тельность модуля Гаусса для рассматриваемых 
мембран из полимерных стержней показана 
в работе [7] . 

В работе [8] получено отношение гауссо-
вого модуля и  модуля поперечного изгиба 
K: K = KG −0.3  из условия равновесия упругой со-
ставляющей и энергии гидратации. Общая энер-
гия есть равновесное значение энергии попереч-
ного изгиба, гауссова энергия и энергия, связан-
ная со спонтанной кривизной ~L0KJs. В работе [9] 
получено другое отношение эластических кон-
стант: KG/K = –1.04 ± 0.03 для липидного бислоя, 
а для монослоя KG(m)/K(m) = –0.98 ± 0.09. Дан-
ные результаты были получены численно с по-
мощью молекулярной динамики.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для DLPC, а  точнее его аналога в  мембра-
не, состоящей из полимерных стержней такой 
же длины, что и молекулы DLPC, модуль Гаусса 
положителен и KG = 0.37K.

Запишем также момент спонтанного изги-

ба K J = z p z p z dzJJ s L N

L

− ( ) − ( )( )∫
0

0

, где KJJ модуль 

поперечного изгиба [3].
Первый основной результат данной работы 

(профиль давления) представлен в табл. 1. В ней 
показано распределение латерального давления 
в монослое мембраны из DLPC с заданной кри-
визной R = 31.4 нм. В ней z/L0 – расстояние от 
гидрофильной области до центра бислоя, нор-
мированное на толщину монослоя L0 = 1.1 нм.

Результаты, полученные в данной работе, со-
гласуются с данными молекулярной динамики. 
Латеральное давление рассматривается во вну-
тренней части бислойной мембраны (рис.  2). 
Кривизну и модули упругости удобно относить 
к нейтральной поверхности мембран – поверх-
ности, на которой значение добавки к профилю 
латерального давления за счет кривизны рав-
но нулю, т.е. не совершается работа по измене-
нию латерального давления внутри мембраны. 
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Положение нейтральной поверхности определя-
ется условием равенства нулю модуля смешан-
ной деформации растяжения-изгиба:

	 K
F

A JAJ = − ∂
∂ ∂

=
2

0.� (9)

Латеральное давление также возможно от-
носить к  поверхности монослоя. Обозначим 
Pt – латеральное давление, проинтегрированное 

по толщине монослоя. Тогда P =
F
At

t−
∂
∂ , где Ft – 

свободная энергия. При этом pL(z) = Пt(z) – про-
филь латерального давления по толщине мем-

браны, и P = П z dzt t

L

( )∫
0

0

. Распределение профи-

ля латерального давления представлено на рис. 2. 
При z/L0= 0.3 расположена нейтральная поверх-
ность, наблюдается пик давления. При вычисле-
нии добавки к профилю латерального давления 

была учтена ренорм-группа: П z J
kT
A

R z

Lt
nt1
1

0

( )
∞

( )
( ) = ( )

, . 

Здесь J – кривизна, Rnt
(1)(z) – первая поправка 

по теории возмущений, добавка к собственной 

функции за счет кривизны в гидрофобной части 
бислоя, где t значит «hydrophobic tails» – область 
гидрофобных хвостов липидов, n – собственные 
функции.

Пик латерального давления указывает на по-
ложение нейтральной поверхности. Как было 
указано выше, на нейтральной поверхности не 
возникает латерального растяжения или сжатия
∂

∂ ∂

2

0
F

A J
= . Таким образом, нейтральная поверх-

ность расположена не на поверхности раздела 
гидрофильная голова  – гидрофобные хвосты, 
а  ее положение совпадает с  пиком давления 
z/L0 = 0.3. В работе [10] было показано, что ней-
тральная поверхность не совпадает с границей 
раздела полярных головок и гидрофобных хво-
стов; она сдвинута от этой границы приблизи-
тельно на 0.1 нм вглубь монослоя.

Далее рассмотрение пика не учтено в работе [2]. 
В [2] авторы вычислили с помощью молекулярной 
динамики латеральное давление внутри везикулы 
с заданной кривизной. Получено несколько пиков 
на кривой латерального давления, что качествен-
но совпадает с результатами этой работы. Однако 
положение нейтральной поверхности из графи-
ков работы [2] не совпадает с рассчитанным здесь. 
При этом предсказываемое положение нейтраль-
ной поверхности в нашей работе z/L0 =0.3 согла-
суется с данными, полученными в работе [11]. 

Полученные в  ходе расчетов в  данной ра-
боте величины модулей упругости согласуют-
ся с известными из литературы. Например, Kθ , 
рассчитанное для DLPC, согласуется с данны-
ми работы [12], Ktw согласуется с  [4]. Из про-
веденных расчетов получается что для DLPC 
Kθ = 0.059926 Н/м (L0 = 1.1 нм, γ = 30 мН/м), для 
DМPC Kθ = 0.046 Н/м (L0=1.3 нм, γ = 30 мН/м). 
Для сравнения, в работе [12] для DMPC получено 
Kθ = 43 ± 2 мН/м, для DPPC – Kθ = 44 ± 16 мН/м. 
Что касается модуля кручения Ktw, в работе [4] 
для DLPC было получено Ktw = 0.2 × 10–19 Дж. 
Для сравнения, величина Ktw , полученная здесь 
для DLPC, равна Ktw = 2.42 × 10–20 Дж. 

Таким образом, теоретически рассчитанная 
величина модуля Ktw как второго момента нор-
мального давления оказывается близка к вели-
чине, определенной в работе [4]. 

Значения модуля кручения Ktw не могут быть 
получены в программе для расчета термодина-
мических значений модуля изгиба Ribak Kartin. 
Детально модуль изгиба вычислен в [13]. Здесь 
необходимо привести формулы для Ktw. Мо-
дуль крученияKtw в  бислой-монослойной си-
стеме эквивалентен (2aB(z)  – 2aB1(z)), где 

Таблица 1. Данные для вычисленного профиля 
латерального давления Пt(z) 

z/L0 Пt(z), кбар

0 0.11

0.1 0.18

0.2 0.31

0.3 0.41

0.4 0.16

0.5 0.3

0.6 0.21

0.7 0.3

0.8 0.33

0.9 0.13

1 0.3

Примечание. П П z J П zzt t t( ) = ( ) + ( )( ) ( )1 0
, , где П zt

0( ) ( )  – 
профиль латерального давления в плоской мембране без 
кривизны, П z Jt

1( ) ( ),  – добавка к профилю латерального 
давления.
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B(z) – потенциал энергии энтропийного оттал-
кивания липидных цепочек; B1(z)  – распреде-
ление латерального давления из-за кривизны 
в продольных координатах изгиба. Эта формула 
сопоставима с формулой (3) с тем лишь отличи-
ем, что B(z) – размерный потенциал, а функция 

b(l), входящая в виде производной 
∂
∂
b
l

, – безраз-

мерна. Размерность [B] = [Дж × м/м4] = [Па].
Как следует из формулы (3) и  текста после 

нее, общие значения модуля кручения Ktw рав-
ны: 3.46 kT/нм DAPC, 3.91 kT/нм DMPC.

Подробности вычисления производной 
∂
∂
b
l

, вхо-

дящей в формулу (3), представлены в Приложении.
Приведенные значения модуля кручения ра-

нее не рассчитывались и не измерялись. 
Стоит здесь также привести оценки модуля 

кручения и изгиба для объемного нематика: 

K J L J z p z dz L kT f d blJJ

L

N= ( ) = ⋅ ⋅ ( )∫0
0

0
20

2 2 ,

K z p z dz L kT f d bltw N

L
= ( ) = ⋅ ⋅ ( )∫ 2

0
0
20

3 2 .

Таким образом, получается соотношение 
Ktw = 2/3KJJ.

Стоит отметить, что в большинстве задач не 
очень корректно рассматривать только pN(z), 
где N эквивалентно радиальным координатам 
prr(z) = pN(z) [2]: необходимо рассматривать так-
же и  pL(z). Например, в  задаче о  встраивании 
антимикробного пептида в мембрану клетки ра-
бота по встраиванию антимикробного пептида 
в мембрану равна

W A z p z dz
L

L= ( ) ⋅ ( ) ⋅∫ ∆
0

,

где ∆A z( ) – изменение площади мембраны вслед-
ствие частичного встраивания амфипатическо-
го пептида; в это выражение входит латеральное 
давление pL(z). Однако моменты радиальных 
давлений в  изогнутой мембране практически 
совпадают с профилем латерального давления 
в плоской мембране, в которой, согласно расче-
там, pN(z) невелико. (см. рис. 1).

z/L

П (z),
кбар

t

0

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
0.00   0.10   0.20   0.30   0.40   0.50   0.60   0.70   0.80   0.90   1.00

Рис. 2. Распределение латерального давления в  мембране из DLPC  c кривизной радиуса R  =  31.4  нм,  
J = 1/R – кривизна верхнего монослоя (см. табл. 1).
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ПРИЛОЖЕНИЕ 

Параметр b – безразмерный энтропийный ко-
эффициент – вычисляется из уравнения равно-
весия латерального давления и поверхностного 
натяжения границы раздела вода – липидные 
хвосты:

	
∂
∂

= −
F
A

t γ,� (П1) 

где Ft – свободная энергия гидрофобной цепи 
(хвоста – “tails”) липида,

	 b
v a v a

=
−( )

+
−( )

1

1

1

4 1
2 4 3 8 3

,� (П2) 

где v
K A

kTL

f= 0
3π

 – безразмерный коэффициент, 

	 v
K A

kTL

f= 0
3π

.� (П3) 

Здесь Kf  – изгибная жесткость липидной 
цепочки; A0  =  0.2  нм2  – несжимаемая пло-
щадь липидной цепи;  =  A/A0 безразмерная 
площадь, которая вычисляется из уравнения 
самосогласования:

	 �
�

� �F
B

= L R zt 2 . � (П4)

Или в безразмерном виде:

	 3
4

1

2 2
1

3 4

2

b
+

b
= v a

/
.�� � � (П5)

Дифференцирование уравнения (П5) c уче-
том (П3) дает первую производную b по l:

	
∂
∂

=
−( )

+
b
l

b v a

b

16 1

4 2

2 2

1 4
.� (П5)

Аналогично вычисляется ∂∂

2b
l

.
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Thermodynamics of a Lipid Membrane with Curvature

A. A. Drozdova1
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In this paper, we consider the lateral bending of the membrane surface and the lateral pressure profile in the 
neutral part of the membrane (the neutral part is the part of the membrane where no work is done to change 
the pressure). They are chosen in such a way as to calculate the given law of curvature change. Next, the lateral 
pressure along the thickness of the curved membrane is obtained. Computing the pressure profile along the 
thickness of the monolayer involves some difficulties. The formulas for these and other characteristics such 
as spontaneous bending moment, Gauss modulus for different phases and torsional modulus Ktw = K2 are 
given here. The formula for the lateral pressure profile in a membrane with curvature is obtained using the 
renormalization group.

Keywords: lipid membrane, lateral pressure profile, Gauss modulus, torsion modulus, curvature


