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Контролируемое образование сквозных пор в бислойных липидных мембранах является ключевой 
стадией различных биотехнологических методик. Избыточная энергия кромки поры характеризуется 
линейным натяжением, величина которого определяет общую стабильность мембраны по отношению 
к образованию пор. Практически важный размер пор составляет порядка нескольких нанометров. Ис-
следование таких пор прямыми оптическими методами невозможно, однако они, в принципе, могут 
быть визуализированы методом атомно-силовой микроскопии. В этом методе используется твердая 
подложка, на которой липидный бислой удерживается за счет взаимодействия с ней одного из мо-
нослоев. В настоящей работе мы теоретически исследовали влияние наличия подложки на величину 
линейного натяжения кромки поры. Предполагалось, что линейное натяжение определяется энергией 
упругих деформаций мембраны на кромке. Были рассмотрены различные режимы взаимодействия 
мембраны с подложкой: от свободной мембраны (полное отсутствие взаимодействия) до случая бес-
конечно сильной адгезии мембраны на подложку. Результаты расчетов показывают, что относительное 
изменение линейного натяжения кромки поры при такой вариации интенсивности взаимодействия 
мембраны с подложкой оказывается менее 3.5%. Таким образом, разработанная теоретическая модель 
предсказывает чрезвычайно слабое влияние взаимодействия с подложкой на величину линейного на-
тяжения – основную энергетическую характеристику кромки поры.
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ВВЕДЕНИЕ

Бислойные липидные мембраны являют-
ся чрезвычайно слабопроницаемыми тонки-
ми пленками [1]. Высокие барьерные свойства 
мембран используются живыми клетками для 
поддержания постоянного состава цитоплазмы, 
отличного от состава окружающей среды, и со-
става клеточных органелл, отличного от состава 
цитоплазмы. Малая толщина мембран (~ 4 нм) 
позволяет поддерживать значительные градиен-
ты концентраций различных веществ и электри-
ческих потенциалов [2]. В норме транспорт не-
обходимых клетке веществ через мембрану осу-
ществляется посредством специализированных 
каналов или насосов [3, 4] либо посредством то-
пологической перестройки мембраны в процессах 

экзо- и эндоцитоза [5, 6], а также фагоцитоза [7]. 
Резкое неконтролируемое повышение проница-
емости мембраны вследствие образования в ней 
сквозной поры, как правило, приводит к гибели 
клетки [8]. Однако понимание механизмов кон-
тролируемого образования пор в липидных мем-
бранах является ключом к разработке новых си-
стем трансфекции и адресной доставки лекарств, 
технологии создания гибридных клеток и т.д.

Впервые образование пор в тонких бесструк-
турных пленках было теоретически описано в ра-
боте Дерягина и Гутопа [9]. В данной теории пред-
полагается, что энергия пленки с порой радиуса R 
может быть записана в виде: E(R) = 2pRg – pR2s. 
Первое слагаемое, пропорциональное пе-
риметру поры (2pR) с  коэффициентом 
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пропорциональности g, называемым линейным 
натяжением [9], соответствует изменению вну-
тренней энергии пленки при образовании поры. 
Это слагаемое учитывает различие энергии ма-
териала пленки на кромке поры и вдали от нее. 
Второе слагаемое, пропорциональное площади 
поры (pR2) с  коэффициентом пропорциональ-
ности s, называемым латеральным натяжением, 
учитывает работу внешних сил. Соответственно, 
латеральное натяжение является для мембраны 
внешним параметром, определяющимся конкрет-
ной экспериментальной системой; как правило, 
латеральное натяжение точно контролируется 
в эксперименте [10–12]. Линейное натяжение, на-
против, является параметром, который определя-
ется физико-химическими свойствами материа-
ла пленки, а также детальной структурой кромки 
поры. Линейное натяжение не может контроли-
роваться в эксперименте, однако может быть из-
мерено [13–15]. В модели Дерягина–Гутопа энер-
гия, как функция радиуса, имеет максимум при 
так называемом критическом радиусе R* = g/s. 
При 0 < R < R* энергия понижается при умень-
шении радиуса; при R > R* энергия бесконечно 
понижается при увеличении радиуса. Таким об-
разом, состояние пленки без поры (с порой ну-
левого радиуса) оказывается метастабильным, 
а основному состоянию системы соответствует 
пора бесконечного радиуса, т.е. полное отсутствие 
пленки. Величина энергии DE = E(R*) = pg2/s 
определяет высоту энергетического барьера, кото-
рый необходимо преодолеть для перехода из ме-
тастабильного (R = 0) в основное (R → ∞) состо-
яние. Чем больше латеральное натяжение и чем 
меньше линейное натяжение, тем меньше высота 
энергетического барьера DE.

При R  =  R* энергия максимальна, и  плен-
ка с порой находится в состоянии равновесия, 
хотя и  неустойчивого. Соответственно, в  са-
мом положении равновесия потенциальная сила 
F = –dE(R*)/dR равна нулю. В окрестности кри-
тического радиуса эта сила мала, и изменения 
радиуса под действием потенциальной силы F 
должны быть относительно медленными. Такое 
поведение системы регистрировалось экспери-
ментально методом атомной силовой микро-
скопии (АСМ) [16]. Толстая полимерная пленка, 
к которой было приложено некоторое латераль-
ное натяжение, наносилась на твердую подлож-
ку. В пленке лазерным лучом прожигались отвер-
стия различного радиуса. Отверстия малого ради-
уса спонтанно закрывались, отверстия большого 
радиуса увеличивались. При некотором проме-
жуточном радиусе (~ 1 мкм), соответствующем 
критическому радиусу данной системы, размер 

отверстия оставался практически постоянным 
в течение длительного времени (~ 15 мин) [16]. 
Таким образом, при известном латеральном натя-
жении s, путем измерения критического радиуса 
системы R* = g/s, данный метод может использо-
ваться для определения величины линейного на-
тяжения кромки поры g. Для модельных липид-
ных мембран при типичном латеральном натяже-
нии s ~ 1 мН/м [17, 18] и линейном натяжении 
g ~ 15 пН [13] величина критического радиуса со-
ставляет R* ~ 15 нм. Соответственно, такие отвер-
стия не могут прожигаться оптическим лазером. 
Однако поры такого радиуса, в принципе, могут 
быть сформированы в липидном бислое, нане-
сенном на  твердую подложку, либо путем нор-
мального продавливания мембраны зондом АСМ 
подходящего размера в режиме измерений «сила – 
расстояние» (force – distance) [19, 20], либо путем 
латерального сдвига липида малым зондом [21]. 

Состояние мембраны в экспериментах АСМ 
принципиально отличается от свободной мем-
браны, например, гигантской однослойной ве-
зикулы, наличием твердой слюдяной подложки. 
Подложка автоматически делает мембрану асим-
метричной, поскольку с подложкой взаимодей-
ствует только один липидный монослой из двух. 
Ранее было показано [22], что такая асимметрия 
может изменять среднюю конфигурацию грани-
цы жидко-упорядоченных липидных доменов 
с окружающей жидко-неупорядоченной мембра-
ной, вплоть до практически полного исчезнове-
ния одной из двух возможных равновесных кон-
фигураций границы, имеющихся в свободной 
симметричной мембране. Кроме того, теоретиче-
ски было предсказано влияние твердой подлож-
ки на адсорбцию на мембрану амфипатических 
пептидов и их латеральное взаимодействие [23]. 
Возможное влияние подложки на линейное на-
тяжение кромки поры, насколько нам извест-
но, ранее не исследовалось. В настоящей работе 
проведен расчет линейного натяжения кромки 
поры в мембране на подложке для различных 
режимов взаимодействия мембраны с подлож-
кой. Показано, что влияние подложки достаточ-
но мало: линейное натяжение поры в мембране 
с бесконечно сильной адгезией к подложке отли-
чается от линейного натяжения поры в свобод-
ной мембране приблизительно на 3.5%. 

ПОСТАНОВКА И РЕШЕНИЕ ЗАДАЧИ

Кромка сквозной поры в липидном бислое 
характеризуется сильными деформациями ли-
пидного материала [24]. Для расчета энергии 
деформаций мы используем теорию упругости 
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липидных мембран, исходно разработанную 
Хаммом и  Козловым [25], позднее обобщен-
ную с учетом дополнительных деформационных 
мод [26]. В рамках этой теории упругости дефор-
мации считаются малыми, и энергия вычисля-
ется в квадратичном порядке по ним. Средняя 
ориентация липидных молекул описывается 
векторным полем единичных векторов n, назы-
ваемых директорами. Поле директоров задается 
на поверхности, называемой нейтральной, рас-
положенной внутри липидного монослоя на гра-
нице полярных головок и гидрофобных хвостов 
липидов [27]. Форма нейтральной поверхности 
задается векторным полем единичных нормалей 
N к ней. Будем считать, что твердая подложка 
и мембрана на ней горизонтальны. Ближайший 
к  подложке липидный монослой будем назы-
вать нижним, и параметры, относящиеся к нему, 
будем обозначать индексом «l». Удаленный от 
подложки липидный монослой будем называть 
верхним, и относящиеся к нему параметры бу-
дем обозначать индексом «u». Введем декарто-
ву систему координат Oxyz с  началом коорди-
нат O, расположенным на поверхности подлож-
ки, и осью Oz, направленной перпендикулярно 
подложке в сторону мембраны (рис. 1). В этой 
системе координат формы нейтральных поверх-
ностей верхнего и нижнего монослоев, а также 
межмонослойной поверхности могут быть за-
даны функциями z-координат их точек: Hu(x, y), 

Hl(x, y), M(x, y) соответственно. Поверхностная 
плотность энергии деформированного монослоя 
может быть записана в виде [26]:
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где kc, kt, ka, kG, krot – модули поперечного из-
гиба, наклона, латерального растяжения, га-
уссовой кривизны и  кручения соответствен-
но; J0  – спонтанная кривизна монослоя; 
t = n – N – вектор наклона; a – относительное 
изменение площади нейтральной поверхности; 
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соответствующие проекции директора); H(x, y) 
– z-координаты точек нейтральной поверхности 
монослоя; s – латеральное натяжение. Первое 
слагаемое соответствует деформации попереч-
ного изгиба, который для типичных липидных 
мембран является самой мягкой деформацион-
ной модой [28, 29]. При отсутствии деформации 
наклона, т.е. при совпадении директора и нор-
мали, n = N, div(n) = div(N) = –J, где J – гео-
метрическая кривизна поверхности, рассчиты-
ваемая как сумма принципиальных кривизн C1, 
C2 поверхности: J = C1 + C2. Для сквозной поры, 
форма кромки которой может приближенно 
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Рис. 1. Схематическое изображение одномерной кромки поры в мембране на подложке. Подложка показана на-
клонной штриховкой. Ось Oz декартовой системы координат перпендикулярна плоскости подложки; ось Ox пер-
пендикулярна линии кромки поры. Форма нейтральных поверхностей верхнего и нижнего монослоев, а также 
межмонослойной поверхности описывается функциями Hu(x), Hl(x), M(x) соответственно. Толстой красной ли-
нией показана нейтральная поверхность вертикального монослойного участка; ее форма описывается функцией 
Hv(z). Нейтральная поверхность вертикального монослойного участка непрерывно сопрягается с нейтральной по-
верхностью нижнего монослоя в точке {X1, Z1}, верхнего монослоя – в точке {X2, Z2}. Толщина гидрофобной части 
монослоя h.
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рассматриваться как половина тороидальной 
поверхности, C1 ~  1/h – меридиональная кри-
визна, C2 ~ 1/r – экваториальная кривизна, где 
h ≈ 1.5 нм – толщина гидрофобной части монос-
лоя (расстояние между межмонослойной и ней-
тральной поверхностями) (рис.  1), r – радиус 
поры в экваториальной плоскости. В окрестно-
сти критического радиуса (~ 15 нм), r >> h, следо-
вательно, C1 >> C2, и экваториальной кривизной 
кромки поры можно пренебречь. В этом случае 
система становится эффективно одномерной: 
все величины зависят лишь от координаты, пер-
пендикулярной линии кромки поры, а вдоль ли-
нии кромки система обладает трансляционной 
симметрией. Направим ось Ox декартовой систе-
мы координат перпендикулярно линии кромки 
поры, а ось Oy – параллельно ей (рис. 1). Во всех 
дальнейших расчетах кромка поры предполага-
ется одномерной, т.е. обладающей трансляци-
онной симметрией вдоль оси Oy. В такой транс-
ляционно симметричной системе, описываемой 
в рамках линейной теории упругости, rot(n) = 0, 
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формации кручения и  гауссовой кривизны не 
дают вклада в упругую энергию липидного мо-
нослоя. Кроме того, векторные величины мо-
гут быть заменены их проекциями на  ось Ox: 
n → nx = n; N → Nx = N, t = n – N → t = n – N. 
Дополнительно, div(n) → dn/dx; grad(H) → dH/dx. 
Таким образом, поверхностная плотность энер-
гии деформации липидного монослоя может 
быть записана в следующем виде:
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Здесь и всюду ниже штрих обозначает произ-
водную по координате x.

Модуль всестороннего сжатия липидных мем-
бран очень велик, ~ 1010 Дж/м3 [30]. Можно счи-
тать, что гидрофобная часть липидного моно
слоя локально объемно несжимаема, т.е. что 
объем элемента монослоя не изменяется при де-
формации. С требуемой точностью условие ло-
кальной объемной несжимаемости для верхнего 
и нижнего монослоев имеет вид [25, 26]:
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Из этих условий возможно выразить au, al че-
рез nu, nl, Hu, Hl, M. Кроме того, с требуемой точ-
ностью Nu ≈ Hu′, Nl ≈ –Hl′. Окончательно энергия 
деформации мембраны записывается в виде:
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Интегрирование ведется по координате x; та-
ким образом, выражение (4) дает энергию, отне-
сенную к единице длины вдоль оси Oy, т.е. вдоль 
кромки поры.

Необходимо учесть, что нижний монослой 
горизонтального бислоя взаимодействует с твер-
дой подложкой. В работе [22] рассматривалось 
влияние подложки на  конфигурации границ 
упорядоченных доменов в мембране. В ней учи-
тывались электростатические, ван-дер-ваальсо-
вы и гидратационные взаимодействия. Полная 
сила взаимодействия мембраны с плоской заря-
женной подложкой, отнесенная к единице пло-
щади, записывалась в виде [31, 32]:
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где sm – поверхностная плотность электриче-
ского заряда мембраны; sp – поверхностная 
плотность электрического заряда подложки; 
e0 – диэлектрическая проницаемость вакуума; 
ew – диэлектрическая проницаемость воды; 
lD ≈ 1 нм – длина Дебая в 100 мМ бинарном элек-
тролите; Ha ≈ (3 ÷ 10) × 10–21 Дж – константа Га-
макера; P0 ≈ 4 × 107 ÷ 1010 Па – расклинивающее 
давление; lh ≈ 0.1 – 0.3 нм – характерная длина 
гидратационного отталкивания [33]. Первое 
слагаемое в выражении (5) соответствует элек-
тростатическим взаимодействиям, второе сла-
гаемое – ван-дер-ваальсовым, третье слагаемое 

– гидратационным. Энергия взаимодействия 
мембраны и подложки, отнесенная к единице 
площади, может быть получена путем интегри-
рования силы (5) по координате z:
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где (Hl – z0) – расстояние от подложки до поляр-
ных групп липидов нижнего монослоя мембра-
ны; z0 ≈ 0.7 нм – толщина полярной части липид-
ного монослоя [27]. При физически разумных 
значениях параметров эта энергия имеет мини-
мум. Положение минимума H0 не может быть 
найдено аналитически, поэтому мы находили 
его численно при заданных численных значени-
ях параметров. Разлагая энергию в окрестности 
точки H0 до второго порядка, найдем эффектив-
ный квадратичный потенциал, в котором нахо-
дится нейтральная поверхность нижнего монос-
лоя мембраны:

	 w
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l≈ −( )
2 0
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При типичных значениях параметров sm = 0, 
sp = –0.032 Кл/м2 [31], ew = 81, lD = 1 нм, lh = 0.2 нм, 
P0 = 4 × 107 Н/м2 [33], Ha = 5 × 10–21 Дж [31], для 
крутизны потенциала получается значение 
Ks = 0.3 × 1015 Дж/м4 = 0.08 kBT/нм4 и H0 ≈ 1.7 нм. 
Потенциал вида (7) налагает граничное условие 
на  форму нейтральной поверхности нижнего 
монослоя: необходимо, чтобы Hl(x → ∞) → H0. 
При этом конкретное значение величины H0 не 
имеет особого физического смысла; H0 может 
быть сделано равным нулю путем параллельно-
го переноса системы координат вдоль оси Oz. 
В дальнейшем для простоты будем считать, что 
H0 = 0 и ws = Ks(Hl)2/2. Значение Ks = 0 соответ-
ствует предельному случаю свободной мембра-
ны, Ks = ∞ – мембране с бесконечно сильной 
адгезией к подложке. В последнем предельном 
случае Hl ≡ 0. С учетом взаимодействия нижнего 
монослоя горизонтального бислойного участка 
с подложкой, функционал энергии горизонталь-
ного бислойного участка записывается в виде:
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где интегрирование ведется по поверхностям 
верхнего и нижнего горизонтальных монослоев 
соответственно. Вариация этого функционала по 
функциям nu, nl, Hu, Hl, M приводит к пяти урав-
нениям Эйлера–Лагранжа.
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где A = ka/kt, ks = Ks/kt. Эта система уравнений 
линейная с постоянными коэффициентами. Из 
последнего уравнения системы (9) выразим фор-
му межмонослойной поверхности:
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Далее введем новые функции a(x) = nu(x) + nl(x); 
b(x)  =  nu(x) – nl(x); Ha(x)  =  Hu(x)  +  Hl(x); 
Hb(x) = Hu(x) – Hl(x). Обозначим пять уравнений 
системы (9) последовательно сверху вниз как E1, 
E2, E3, E4, E5. Подставим в  уравнения системы 
(9) выражение (10) для M(x) и перейдем к новой 
системе уравнений: E10 = E1 – E2, E20 = E1 + E2, 
E30 = E3 – E4, E40 = E3 + E4. Получим:
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Из уравнения E30 выразим Ha:
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и подставим в уравнения E10, E20, E40. Получим 
уравнения E11, E21, E41 соответственно:
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Из уравнения E21 выразим производную Hb′:
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подставим Hb′ в уравнение E11 и в продифферен-
цированное по x уравнение E41. Получим уравне-
ния E12 и E42 соответственно:
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Из уравнения E42 выразим вторую производ-
ную b″:
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и подставим в дважды продифференцированное 
по x уравнение E12. В результате получится ли-
нейное однородное дифференциальное уравне-
ние с постоянными коэффициентами восьмого 
порядка относительно функции a(x) вида
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В уравнение (17) подставлялась функция a(x) 
вида a(x) = Celx, где C и l – постоянные коэффи-
циенты. Это приводило к характеристическому 
полиному уравнения (17) следующего вида:
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Комплексные корни l1, ..., l8 характеристиче-
ского полинома (19) находились аналитически, 
однако соответствующие выражения очень гро-
моздки, поэтому здесь не приводятся. Посколь-
ку в характеристический полином входят лишь 
четные степени l, то l1 = –l5, l2 = –l6, l3 = –l7, 
l4 = –l8; кроме того, пары корней l1, l2 и l3, l4 – 
комплексно сопряженные. Общее решение урав-
нения (17) записывалось в виде:
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где C1, ..., C8 – постоянные комплексные ко-
эффициенты, которые следует определить из 
граничных условий. Далее a(x) подставлялось 
в уравнение (16), откуда после двух последова-
тельных интегрирований по координате x полу-
чалось выражение для b(x); двойное интегриро-
вание увеличивало число неопределенных ко-
эффициентов до десяти. Выражение (20) также 
подставлялось в  уравнение (14), откуда после 
интегрирования по координате x получалось вы-
ражение для Hb(x) и попутно возникал еще один 
(одиннадцатый) неопределенный коэффициент. 
Полученные выражения для Hb(x) и для a(x) да-
лее подставлялись в уравнение (12), что позво-
лило найти Ha(x). Затем определялись функции 
nu(x), nl(x), Hu(x), Hl(x) как nu(x) = [a(x) + b(x)]/2, 
nl(x) = [a(x) – b(x)]/2, Hu(x) = [Ha(x) + Hb(x)]/2, 
Hl(x)  =  [Ha(x) – Hb(x)]/2; они подставлялись 
в уравнение (10), из которого находилась функ-
ция M(x). Далее все найденные функции nu(x), 
nl(x), Hu(x), Hl(x), M(x) подставлялись в исход-
ную систему уравнений Эйлера–Лагранжа (9). 
Из условий выполнения уравнений системы 
определялись дополнительные неопределенные 
коэффициенты, возникшие при интегрировании 
уравнений (14) и (16). Полученные таким обра-
зом в аналитическом виде функции nu(x), nl(x), 
Hu(x), Hl(x), M(x) являются общим решением си-
стемы уравнений Эйлера–Лагранжа (9).

Предполагалось, что деформации должны 
быть ограничены всюду и затухать при удалении 
от кромки поры (x → +∞). На неопределенные 
постоянные комплексные коэффициенты также 
налагались условия вещественности всех функ-
ций nu(x), nl(x), Hu(x), Hl(x), M(x) при любом ве-
щественном аргументе x. Далее функции nu(x), 
nl(x), Hu(x), Hl(x), M(x) подставлялись в функци-
онал энергии (8), и после интегрирования ана-
литически находилась энергия Wh.

Функционал упругой энергии мембраны (4) 
получен в предположении малости деформаций. 
В частности, предполагалось, что |n| << 1, |N| << 1, 
что означает, что малы отклонения директоров 
и нормалей от их направления в горизонтальном 
плоском невозмущенном бислое. Однако на эк-
ваторе поры липидные молекулы расположены 
практически горизонтально, и n = 1. Для фор-
мально корректного описания экваториальной 
области поры для нее возможно ввести другое 
референтное состояние, отличное от состояния 
плоского горизонтального бислоя. В  качестве 
референтного состояния будем использовать 
плоский вертикальный монослой, в  котором 
малы проекции директора и нормали на ось Oz, 
а не на ось Ox (рис. 1). Параметры, относящиеся 

к этому участку кромки поры, будем обозначать 
индексом «v»: проекции директора и нормали 
на ось Oz обозначим nv, Nv соответственно; фор-
му нейтральной поверхности вертикального мо-
нослоя будем задавать x-координатами ее точек, 
функцией Hv(z) (рис. 1). Для вертикального мо-
нослоя функционал упругой энергии записыва-
ется в виде:
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Вариация этого функционала по функци-
ям nv(z) и  Hv(z) приводит к  двум уравнениям 
Эйлера–Лагранжа:
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где l2 = kc/kt; s = s/kt. Проинтегрируем второе 
уравнение по z. Получим следующую систему:
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где d0 – некоторый постоянный коэффициент. 
Из второго уравнения возможно выразить про-
изводную dHv(z)/dz = (d0 – nv)/(1 + s) и подста-
вить в первое уравнение системы (23). Получит-
ся изолированное линейное неоднородное урав-
нение с постоянными коэффициентами второго 
порядка на функцию nv(z). Решение этого урав-
нения записывается в виде:
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где d1, d2, – неизвестные действительные коэф-
фициенты, которые следует определить из гра-
ничных условий. Подставив это решение во вто-
рое уравнение системы (23), найдем функцию 
Hv(z):
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где d3 – неизвестный действительный коэффи-
циент, который следует определить из гранич-
ных условий. Далее, подставляя полученные 
выражения для nv(z), Hv(z) в  исходную систе-
му уравнений Эйлера–Лагранжа (22), получим, 
что первое уравнение системы (22) выполняет-
ся, только если d0 = 0. Таким образом, общее ре-
шение уравнений Эйлера–Лагранжа (22) может 
быть записано в виде:

	

n z d
s

s
z
l

d
s

s
z
l

H z
l

s s

v

v

� � �
�

�

�
�
�

�

�
�
�
� �

�
�

�
�
�

�

�
�
�

� � �
�

2 11 1

1

exp exp ,

�� �
�

�
�

�
�
�

�

�
�
�
�

�

�
��

�
�

�

�
�
�

�

�
�
�

�

�
�� �

d
s

s
z
l

d
s

s
z
l

d

1

2 3

1

1

exp

exp .

� (26)

Решения (26) подставляются в функционал 
энергии (21), что после интегрирования позво-
ляет найти упругую энергию вертикального мо-
нослойного участка.

Обозначим точку сопряжения вертикально-
го монослойного участка с  нижним моносло-
ем горизонтального бислойного участка {X1, Z1}, 
а с верхним монослоем горизонтального бислой-
ного участка – {X2, Z2} (рис. 1). Тогда интегриро-
вание в (21) должно производиться по z в преде-
лах от Z1 до Z2. В точках сопряжения налагались 
условия непрерывности нейтральных поверхно-
стей и директоров вертикального монослойного 
и горизонтального бислойного участков. Осталь-
ные неопределенные коэффициенты находились 
из условия минимума полной энергии системы 
(Wh + Wv).

Можно произвольно зафиксировать коорди-
нату X1, поскольку это определяет положение 
мембраны как целого относительно начала вы-
бранной декартовой системы координат. Осталь-
ные координаты сопряжения вертикального 
монослойного и  горизонтального бислойного 
участка (X2, Z1, Z2) находились путем численной 
минимизации полной энергии системы методом 
спуска по градиенту. Задавались некоторые стар-
товые значения координат (X Z Z2

0
1
0

2
0, ,  ). Затем 

на i-й итерации приближенно вычислялся век-
тор градиента упругой энергии системы в виде:
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где d0 – некоторое малое приращение (исполь-
зовалась величина d0 = 10–10 нм); X Z Z

i i i
2 1 2
[ ] [ ] [ ], ,   – 

значения координат X2, Z1, Z2, соответственно, 
на i-й итерации. Значения координат на (i + 1)-й 
итерации находились согласно соотношению:
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где dC – некоторая константа, выбираемая та-
ким образом, чтобы обеспечить сходимость 
алгоритма; типичное значение dC составляло 
~2 × 10–5 нм. Спуск по градиенту останавливал-
ся, когда каждая компонента вектора градиента 
по абсолютной величине оказывалась меньше 
10–5 kBT/нм (kBT ≈ 4 × 10–21 Дж).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для получения количественных результатов 
использовались численные значения параме-
тров, типичные для мембраны, сформирован-
ной из диолеоилфосфатидилхолина. Считалось, 
что модуль поперечного изгиба kc = 10 kBT [28]; 
спонтанная кривизна J0 = –0.091 нм–1 [34]; мо-
дуль наклона kt = 40 мН/м [25, 29]; модуль ла-
терального сжатия ka = 133 мН/м [28]; толщина 
гидрофобной части монослоя h = 1.45 нм [24]; 
латеральное натяжение s = 0.1 мН/м. Величина 
Ks варьировалась в пределах от 0 до 104 kBT/нм4; 
в случае Ks = +∞ линейное натяжение было вы-
числено отдельно, с явно поставленным услови-
ем Hl(x) ≡ 0.

На рис. 2 показана форма мембраны вблизи 
кромки поры при значениях крутизны потенци-
ала взаимодействия с подложкой Ks = 0 (рис. 2а), 
Ks = 10 kBT/нм4 (рис. 2б), Ks = +∞ (рис. 2в). Ве-
личина Ks = 0 соответствует свободной мембра-
не. В этом случае монослои мембраны находят-
ся в одинаковых условиях, система симметрич-
на, и  межмонослойная поверхность плоская. 
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При этом форма нейтральной поверхности 
нижнего монослоя существенно отклоняет-
ся от плоскости: расстояние от линии профиля 
поверхности до горизонтальной оси на рис. 2а 
немонотонно зависит от координаты x. При 
Ks  =  10 kBT/нм4 (рис.  2б) отклонение формы 

нейтральной поверхности нижнего монослоя от 
плоскости значительно меньшее; расстояние от 
линии профиля поверхности до горизонтальной 
оси на рис. 2б слабо зависит от координаты x. 
Форма межмонослойной поверхности отклоня-
ется от плоскости, но достаточно слабо. Случай 
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Рис. 2. Рассчитанная форма нейтральных поверхностей монослоев и межмонослойной поверхности мембраны 
вблизи одномерной кромки поры. Кромка обладает трансляционной симметрией вдоль оси Oy, перпендикулярной 
плоскости рисунка xz. Положение начала координат выбрано таким образом, чтобы самой левой точке мембраны 
соответствовала координата x = 0. Формы рассчитаны при различных значениях крутизны потенциала взаимодей-
ствия с подложкой: а – Ks = 0 (свободная мембрана); б – Ks = 10 kBT/нм4; в – Ks = +∞ (бесконечно сильная адгезия 
мембраны к подложке). На панели в стрелками показано рассчитанное направление директора nu(x) в верхнем 
горизонтальном монослое, nl(x) в нижнем горизонтальном монослое, nv(z) в вертикальном монослое.
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Ks = +∞ (рис. 2в) соответствует бесконечно силь-
ной адгезии мембраны к подложке. Нейтраль-
ная поверхность нижнего монослоя становится 
плоской, а  форма кромки поры существенно 
несимметричной.

Зависимость линейного натяжения кромки 
поры от величины Ks показана на рис. 3а. В слу-
чае свободной мембраны (Ks  =  0) рассчитан-
ная величина линейного натяжения составляет 
g = 22.42 пН, что согласуется с эксперименталь-
но измеряемыми значениями [13]. При увели-
чении Ks линейное натяжение также монотонно 
возрастает (рис. 3), поскольку отклонение фор-
мы нейтральной поверхности нижнего монослоя 
от плоскости в этом случае требует затрат энер-
гии. При Ks = +∞, что соответствует бесконечно 
сильной адгезии мембраны к подложке, рассчи-
танная величина линейного натяжения состав-
ляет g = 23.20 пН. Относительное изменение ли-
нейного натяжения при вариации Ks от 0 до +∞ 
оказывается меньше 3.5%. На рис. 3б показана 
зависимость линейного натяжения кромки поры 
от Ks в полулогарифмическом масштабе. Расчет 
проделан для величины Ks, варьируемой в пре-
делах от 0 до 104 kBT/нм4. Линейное натяжение 
в случае Ks = +∞ вычислялось отдельно, с явно 
поставленным условием Hl(x) ≡ 0. Таким обра-
зом, разработанная теоретическая модель поры 

в мембране на твердой подложке предсказыва-
ет чрезвычайно слабое влияние взаимодействия 
с подложкой на величину линейного натяжения – 
основную энергетическую характеристику кром-
ки поры. Результаты наших расчетов позволяют 
обосновать использование модельных мембран 
на подложках для исследования процесса обра-
зования пор различными методами, в  первую 
очередь атомно-силовой микроскопии, и дают 
количественную оценку вызванного наличием 
подложки искажения измеряемого линейного 
натяжения кромки поры и производных от него 
величин.
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Line Tension of Pore Edge in Membrane on Solid Support 
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Controlled formation of through pores in bilayer lipid membranes is a key stage of various biotechnological 
techniques. Excess energy of the pore edge is characterized by line tension, the value of which determines the 
overall stability of the membrane with respect to pore formation. The practically important pore size is on 
the order of a few nanometers. It is impossible to study such pores by direct optical methods, but they can, in 
principle, be visualized by atomic force microscopy. This method uses a solid support on which the lipid bilayer 
is held due to the interaction of one of the monolayers with it. In this work, we theoretically investigated the 
effect of the presence of the support on the value of the line tension of the pore edge. It was assumed that the 
line tension is determined by the energy of elastic deformations of the membrane at the edge. Various regimes 
of membrane interaction with the support were considered: from a free-standing membrane (complete absence 
of interaction) to the case of infinitely strong adhesion of the membrane to the support. The calculation results 
show that the relative change in the line tension of the pore edge within such variation of the intensity of the 
interaction of the membrane with the support is less than 3.5%. Thus, the developed theoretical model predicts 
an extremely weak effect of the interaction with the support on the magnitude of the line tension–the main 
energy characteristic of the pore edge.

Keywords: lipid membrane, pore, atomic force microscopy, deformation, solid support, line tension


