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Специфические паттерны распределения различных липидов в клеточных мембранах определяют их 
структурные и сигнальные роли, а также обеспечивают целостность и функциональность цитоплазма-
тической мембраны и клеточных органелл. Последние достижения в области создания рекомбинант-
ных липидных биосенсоров и методов визуализации позволяют напрямую наблюдать распределение, 
перемещение и динамику липидов в клетке, что заметно продвинуло понимание функции липидов 
и реакций с их участием как на клеточном, так и на субклеточном уровнях. В данном обзоре мы обоб-
щили данные, касающиеся разработок в области проектирования и применения рекомбинантных 
белковых сенсоров к различным липидам клеточных мембран.
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ВВЕДЕНИЕ

Липиды выполняют в  клетке множество 
функций. Матрица клеточных мембран образо-
вана полярными липидами, которые состоят из 
гидрофобной и  гидрофильной частей. Склон-
ность гидрофобных частей к  самоассоциации 
и тенденция гидрофильных частей к взаимодей-
ствию с водной средой и друг с другом являют-
ся физической основой спонтанного образова-
ния мембран. Этот фундаментальный принцип 
позволяет клеткам отделить свои внутренние 
компоненты от внешней среды, а также обеспе-
чивает компартментализацию внутриклеточ-
ных органелл. Помимо структурной функции, 
липиды могут выступать в качестве первичных 
и вторичных мессенджеров в процессах клеточ-
ной сигнализации. Некоторые липиды опреде-
ляют существование специфичных мембранных 
микродоменов, рекрутирующих белки из цито-
золя, впоследствии реализующих свою функ-
цию в  качестве вторичных мессенджеров или 

компонентов мультибелковых эффекторных 
комплексов.

Основными структурными липидами в эукари-
отических мембранах являются глицерофосфоли-
пиды: фосфатидилхолин, фосфатидиэтаноламин 
(PE), фосфатидилсерин (PS), фосфатидилино-
зитол (PI), фосфатидная кислота (PA) и фосфа-
тидилглицерин. Их гидрофобная часть является 
диацилглицерином, который содержит насыщен-
ные или цис-ненасыщенные жирные ацильные 
цепи различной длины. Сфингофосфолипиды 
представляют другой класс структурных фосфо-
липидов, составляющих клеточные мембраны, 
чей гидрофобный остов представлен церамидом. 
Основными сфингофосфолипидами в  клетках 
млекопитающих являются сфингомиелин (SM) 
и гликосфинголипиды [1]. Вместе с холестерином 
(Chol) сфингофосфолипиды формируют специ-
фические липидные домены в  клеточных мем-
бранах [2, 3], а также обеспечивают плотную упа-
ковку липидов в мембране и тем самым делают ее 
устойчивой к механическому стрессу [4].
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Химические структуры основных липидов, 
присутствующих в составе клеточных мембран 
млекопитающих, представлены на рис. 1. Фосфа-
тидилглицерин (PG) и кардиолипин (CL) исклю-
чены из рассмотрения в рамках данного обзора 
ввиду специфичности локализации (в клетках 
млекопитающих обнаруживаются исключитель-
но на  внутренней поверхности мембран мито-
хондрий, что нивелирует потребность в рекомби-
нантных сенсорах к данным липидам ввиду труд-
ности доставки метки к целевому липиду) [5]. 

Дисрегуляция липидного метаболизма в клет-
ке ассоциируется с различными заболеваниями, 
включая рак, сердечно-сосудистые заболевания, 
неврологические расстройства, диабет и нару-
шения развития [6–9]. Таким образом, получе-
ние всестороннего понимания субклеточного 

распределения липидов в живых клетках необ-
ходимо для выяснения их функции в регуляции 
различных аспектов клеточного метаболизма, 
а также их роли в заболеваниях человека.

За прошедшие годы исследователи разработа-
ли множество молекулярных сенсоров для детек-
ции липидов [10], что в сочетании с передовыми 
методами визуализации значительно расширило 
понимание субклеточного распределения, ки-
нетики и метаболизма липидов в клетках. Боль-
шинство из этих сенсоров может быть как экс-
прессировано внутриклеточно в виде химерных 
белков с белковым флуорофором, так и синтези-
ровано рекомбинантно в Escherichia coli, что по-
зволяет использовать их для детекции в клетках, 
плохо поддающихся трансфекции (например, 
тромбоцитах), и  для окраски фиксированных 

Мембранные липиды

Фосфолипиды

СтериныСфингофосфолипиды

Сфингомиелин
Фосфатидная кислота

Фосфатидилхолин
Фосфатидилсерин

Фосфатидилэтаноламин

Фосфатидилинозитол-4-фосфат

Фосфатидилинозитол

Холестерин

Глицерофосфолипиды

О

О

О

О

О

О

О

ОО

О О

О

О

О

О

О

О О

О

О

О

О

О

О

О
О

О
О

О

О

Р

Р

Р

Н

Н

Н

НН

6

Н

Н

Н

Н

Н
Н

Н

Н

Н

Н

Н

Н

Н

Н

Н

Н

Н

N

N

N

N

N

R1
1

2

+

+

−
−

−

R
R

Рис. 1. Основные классы липидов в клетках млекопитающих. Обозначения R1 и R2 указывают положение цепей 
жирных кислот. Место присоединения полярных головных групп основных глицерофосфолипидов к фосфатидной 
кислоте обозначено красными линиями.
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препаратов. В рамках данного обзора литерату-
ры будет произведен анализ актуального спектра 
рекомбинантных белковых сенсоров к различ-
ным липидам клеточных мембран.

Фосфатидилхолин
Фосфатидилхолин (PC) является наиболее 

распространенным фосфолипидом клеточных 
мембран млекопитающих и составляет 40–60% 
от всех фосфолипидов. PC играет важную струк-
турную роль в мембранах, а также участвует в пе-
редаче клеточных сигналов, выступая субстратом 
или активатором фосфолипаз [11, 12]. В  боль-
шинстве клеток млекопитающих синтез PC осу-
ществляется через цитидиндифосфатхолино-
вый (ЦДФ-холиновый) путь [13], альтернатив-
ный путь синтеза PC существует в гепатоцитах 
и состоит в последовательном метилировании 
фосфатидилэтаноламина фосфатидилэтанола-
мин-N-метилтрансферазой [14].

Высокое содержание РС в клеточных мембра-
нах делает его привлекательной мишенью для 
использования в качестве общего маркера мем-
браны. Разработка сенсора к данному фосфоли-
пиду также позволила бы решить один из важных 
вопросов в области биологии внеклеточных ве-
зикул – детекцию их общего пула. В настоящее 

время универсально признанным маркером вне-
клеточных везикул является экспозиция фос-
фатидилсерина (PS) на их поверхности. Однако 
независимыми группами обнаруживается субпо-
пуляция микровезикул, демонстрирующая отсут-
ствие связывания маркеров PS на поверхности 
мембраны [15–18]. Существующие на  данный 
момент гипотезы предполагают либо истинное 
существование микровезикул с  низким содер-
жанием PS, либо невозможность детекции вези-
кул существующими метками за счет их низкой 
специфичности или других артефактов [19, 20]. 

Группа Zenisek и соавт. [21] разработала един-
ственную на данный момент существующую ре-
комбинантную метку к PC на основе С2-домена 
фосфолипазы А2 (табл. 1). Связывание данной 
метки с  РС в  составе мембран является каль-
ций-зависимым (ЕС50 1  мкМ), обратимым 
[21, 22], а также характеризуется внедрением ги-
дрофобных остатков в составе кальций-связыва-
ющих петель (calcium-binding region, CBR) 1 (F35, 
L39, M38) и 3 (Y96, M98) в углеводородный остов 
мембраны (рис. 2) [23, 24]. Метка позволяет ви-
зуализировать синаптические везикулы мето-
дами электронной микроскопии, а  также ми-
кроскопии суперразрешения (STED (Stimulated 
Emission Depletion) и  FPALM (Fluorescence 
PhotoActivation Localization Microscopy)) [21].

Таблица 1. Белковые липидные сенсоры и их свойства

Липид Метка Фрагмент 
белка Происхождение Продуцент Kd Специфичность Ссылка

PC
PLA2C2 17–141 

C139A/
C141S

Крыса E. coli 420 нМ Да [21, 22]

PS

Аннексин A5 1–320 Человек E. coli 5 нМ Да [25]
Дианнексин 
A5

1–320 Человек E. coli 0.6 нМ Да [25]

LactC2 270–427 Бык E. coli 19 нМ Да [26, 27]
2хРН evt-2 1–110 Человек E. coli ? Да [28]
Tim4 1–273 Мышь 293T 2 нМ Да [29, 30]

PI

BcPI-PLCANH 32–329 
H82A/
Y247N/
Y251H

Бактерия 
Bacillus cereus

E. coli ? ? [31, 32]

PI(3)P

FYVE-HRSx2 160–224 Человек E. coli 2.5 мкМ 
(мономер)

Да [31, 33, 34]

FYVE-EEA1x2 1307–1411 Человек E. coli 45 нМ 
(мономер)

Да [35, 36]

PX-p40phox 2–149 Человек E. coli 5 мкМ Да [35, 37]
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Липид Метка Фрагмент 
белка Происхождение Продуцент Kd Специфичность Ссылка

PI(4)P

P4C-SidC 609–783 Бактерия 
Legionella 
longbeachae

E. coli 71 нМ Да [31, 38]

PH-FAPP1 1–99 Человек E. coli 200 нМ Нет, связывает 
также PI(4,5)P2

[39]

P4M-SidM 544–647 Бактерия 
Legionella 
pneumophila

E. coli ? Да [40]

PI(5)P
ING2-PHDx3 200–281 Человек E. coli ? Нет, связывает 

также PI3P
[31, 41]

PI(3,4)P2
TAPP1 cPHx3 169–329 Человек E. coli 80 нМ 

(мономер)
Да [31, 42, 43]

PI(3,5)P2
SnxA-2xPH 61–-175 Амеба 

Dictyostelium 
discoideum

E. coli 217.5 нМ Да [31, 44]

PI(4,5)P2
PLCδ1-PH 1–155 Человек E. coli 2 мкM Нет, связывает 

также P(1,4,5)
P3

[31, 45, 46]

PI(3,4,5)P3

BTK1-PH 1–165 Мышь E. coli 80 нМ Нет, связы-
вает также 
PI(1,3,4,5)P4

[31, 42, 47]

PH-Akt 1–123 Человек E. coli 590 нМ Нет, связывает 
также PI(3,4)
P2 и PI(4)P 

[35, 42]

GRP1-PH 6–217 Мышь E. coli 170 нМ Нет, связы-
вает также 
PI(1,3,4,5)P4

[35, 42]

PA

Spo20p 50–91 Дрожжи E. coli 2.2 мкМ Да [48]

Opi1p 103–191 Дрожжи E. coli 4.5 мкМ Да [48]

PDE4A1 1–40 Человек E. coli 6.8 мкМ Да [48]

SM

Лизенин 161–297 Дождевой червь 
Eisenia foetida

E. coli 190 нМ Да [49, 50]

EqtII 8-69 V8C/
K69C

Морской 
анемон
Actinia equina

E. coli 26 нМ Нет, связывает 
также D-эри-
тросфин-го-
сульфос-фо-
рилхолин

[49, 51]

Nakanori 1–202 Гриб
Grifola frondosa

Cell-free 
синтез 
[52]

140 нМ Комплекс SM/
Chol

[53]

PlyA2 1–138 Гриб
Pleurotus eryngii

E. coli Слабая 
аффин-
ность

Комплекс SM/
Chol < CPE < CPE/
Chol

[54]

Oly 1–138 Гриб
Pleurotus 
ostreatus

E. coli Слабая 
аффин-
ность

SM/Chol << 
CPE/Chol

[54]

Таблица 1. Продолжение
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Фосфатидилэтаноламин

Фосфатидилэтаноламин (PE)  – второй по 
распространенности фосфолипид в  клетках 
млекопитающих и основной фосфолипид в бак-
териях. В клетках млекопитающих биосинтез PE 
происходит преимущественно в эндоплазмати-
ческой сети и на внутренней мембране митохон-
дрий [4, 60]. В живых клетках он располагается 
на  внутренней стороне клеточной мембраны. 
PE участвует в мембранном транспорте и высту-
пает в качестве предшественника при синтезе 
других фосфолипидов [60–63]. Физико-хими-
ческие свойства PE указывают на его роль в мо-
дуляции кривизны липидных монослоев, а так-
же предположительно участвуют в поддержании 
правильного сворачивания мембранных белков 
[62, 64, 65]. Помимо этого, PE активирует окис-
лительное фосфорилирование [66, 67], вовлечен 
в процессы апоптоза [68] и ферроптоза [69], яв-
ляется медиатором модификации прионов [70].

На данный момент не существует сведе-
ний о наличии рекомбинантного сенсора к PE, 

несмотря на  существование семейства бел-
ков PEBP (phosphatidylethanolamine-binding 
proteins), экспрессирующихся в клетках широ-
кого спектра биологических видов от дрожжей 
до человека [71]. Однако данные касаемо свя-
зывания PEBP с PE противоречивы. Показано, 
что PEBP связывается с  PE в  экспериментах 
с  использованием методов аффинной хрома-
тографии [72] и кристаллографии [73], но, если 
PE включен в мембрану, связывания с PEBP не 
наблюдается [74]. Также отмечают, что PEBP 
не способен переносить PE между мембранами 
[75] и его связывание носит скорее электроста-
тический характер [74].

Доступные сенсоры PE в настоящее время ос-
нованы на молекулах лантибиотиков дурамици-
на и циннамицина [76], которые представляют 
собой 19-аминокислотные пептиды и связывают 
головную группу PE с высокой специфичностью 
и аффинностью [77–79]. Однако нативные дура-
мицин и циннамицин обладают цитотоксично-
стью и могут вызывать деформацию мембраны 
и провоцировать перемещение PE между слоями 

Липид Метка Фрагмент 
белка Происхождение Продуцент Kd Специфичность Ссылка

Chol

PFO D4 363–472 Бактерия 
Clostridium 
perfringens

E. coli 52 нМ Да [55]

PFO D4 YDA 363–472
Y415A/
D434W/ 
A463W

Бактерия 
Clostridium 
perfringens

E. coli 190 нМ Да [56]

ALO D4 403–512 Бактерия 
Bacillus anthracis

E. coli 1.59 нМ Да [57]

eOsh4 40–434
C68S/
C98S/
K108C/
K109A/ 
C229S

Дрожжи E. coli 100 нМ Да [56]

Maistero-2 1–93 Гриб Grifola 
frondosa

E. coli 60 нМ Да [58]

GRAM-W G187W Человек E. coli ? Связывание 
в присутствии 
анионных 
липидов

[59]

Примечание. PC – фосфатидилхолин, PS – фосфатидилсерин, PI – фосфатидилинозитол, PI(3)P – фосфатидилинози-
тол-3-фосфат, PI(4)P – фосфатидилинозитол-4-фосфат, PI(5)P – фосфатидилинозитол-5-фосфат, PI(3,4)P2 – фосфати-
дилинозитол-3,4-бифосфат, PI(3,5)P2 – фосфатидилинозитол-3,5-бифосфат, PI(4,5)P2 – фосфатидилинозитол-4,5-би-
фосфат, PI(3,4,5)P3 – фосфатидилинозитол-3,4,5-трифосфат, PA – фосфатидная кислота, SM – сфингомиелин, Chol – 
холестерин, Kd – константа диссоциации.

Таблица 1. Окончание
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мембраны [80]. Тем не менее показана возмож-
ность существенного снижения цитотоксично-
сти сенсора на основе дурамицина без потери 
аффинности путем пришивки белкового флу
орофора GFP на C-конец дурамицина [76].

Фосфатидилсерин
Фосфатидилсерин (PS) составляет до 10% от 

общего количества фосфолипидов в клетках [81], 
где он синтезируется двумя путями: либо с по-
мощью замены холина на серин в фосфатихил-
холине фосфатидилсериновой синтазой-1, либо 
путем замены этаноламина на серин фосфати-
дилсериновой синтазой-2 [82]. Данные фермен-
ты локализуются на мембранах эндоплазматиче-
ской сети, ассоциированных с митохондриями 
[82]. После синтеза PS транспортируется к дру-
гим клеточным мембранам. Наиболее изучена 
его роль во внеклеточной сигнализации, на-
пример, во время апоптоза и при свертывании 

крови [83–85]. В  здоровых живых клетках PS 
находится исключительно на  внутренней сто-
роне цитоплазматической мембраны благода-
ря работе ATP-зависимых флиппаз [86]. Когда 
клетки подвергаются апоптозу, PS перемещает-
ся на внешнюю сторону мембраны, что являет-
ся сигналом к фагоцитозу. PS также подвергает-
ся экспонированию на поверхности активиро-
ванных тромбоцитов, что вызывает связывание 
и сборку комплексов факторов свертывания [83]. 
Помимо внеклеточных функций, PS играет важ-
ную роль внутри клетки: он требуется для пра-
вильной локализации и/или активации некото-
рых внутриклеточных белков. Список включает 
в себя: убиквитин-белковую E3-лигазу NEDD4, 
ряд изоформ протеинкиназы C, ряд изоформ 
фосфолипаз C и D, PTEN (фосфатидилинози-
тол (3,4,5)-трифосфат фосфатазу), дисферлин 
(белок мышечной репарации), а также ряд изо-
форм синаптотагмина, которые важны для вези-
кулярного транспорта [87]. Кроме того, в целом 
известно, что PS жизненно важен, поскольку 
мыши с полной потерей способности к синтезу 
PS не жизнеспособны [88].

На сегодняшний день наиболее часто исполь-
зуемой меткой для детекции PS является аннек-
син A5, связывание которого с PS происходит 
кальций-зависимо и нековалентно. Аннексин 
A5 может быть рекомбинантно синтезирован 
в E. coli [89], конъюгирован с различными низ-
комолекулярными флуоресцентными метками, 
а  также синтезирован в  виде химерного бел-
ка с  белковым флуорофором. В  работах отме-
чаются значения Kd при связывании аннекси-
на А5 с тромбоцитами и эритроцитами от 10−11 
до 10−8 М [25, 90, 91]. Тандемный димер аннек-
сина А5, дианнексин, демонстрирует еще более 
высокую аффинность к PS [25] (табл. 1). Спе
цифическая третичная структура (так называе-
мое «аннексиновое ядро») содержит четыре по-
втора аннексина А5 и состоит из сегментов дли-
ной около 70 аминокислот, каждый из которых 
свернут в пять α-спиралей, соединенных корот-
кими петлями или поворотами, которые обеспе-
чивают координацию ионов Ca2+. Связанные 
ионы Ca2+ образуют «мостики» между поверхно-
стью мембраны и поверхностью «аннексинового 
ядра» [92] (рис. 3).

Связывание аннексина A5 не зависит от из-
начального агрегатного состояния мембраны 
в месте связывания, однако показано, что вза-
имодействие между двумерной решеткой, обра-
зованной тримерами аннексина A5, ионами Ca2+ 
и  PS, модулирует упорядоченность мембраны 
и вызывает переход из жидкокристаллической 

PLA2C2

M98Мембрана

M38
F35

L39
Y96

Ca
Ca

2+
2+

Рис. 2. Структура фосфатидилхолин-связывающего 
С2-домена фосфолипазы А2 (PLA2C2, Protein Data 
Bank (PDB) код 1RLW). Синим цветом отмечены 
ионы Са2+, необходимые для связывания домена 
с мембраной. Красным цветом отмечены гидрофоб-
ные боковые цепи аминокислотных остатков, вне-
дряющиеся в углеводородный остов мембраны при 
связывании домена с мембраной [23, 24].
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(Ld) в гелевую (Lo) фазу [97]. Связывание аннек-
сина А5 специфично по отношению к PS, одна-
ко PE, включенный в фосфолипидный бислой, 
приводит к более низкому порогу связывания 
аннексина A5 [98]. Подобно большинству гло-
булярных белков, аннексин A5 находится в ди-
намическом конформационном равновесии [99], 
и даже при отсутствии Ca2+ некоторые из кон-
формаций будут демонстрировать слабое свя-
зывание с мембраной, рассчитанная Kd в отсут-
ствие ионов Ca2+ составляет около 50 мМ [100].

Существуют также альтернативные марке-
ры на PS. Например, исследовательская группа 
Gilbert и  соавт. [101] впервые выделила полно-
размерный лактадгерин из молока крупного ро-
гатого скота. Лактадгерин отличается от аннек-
сина А5 более выраженным сродством к  мем-
бранам с повышенной кривизной [102], а также 
способностью успешно связываться с  мембра-
нами, содержащими менее 4% PS [103, 104]. По-
мимо этого, связывание лактадгерина не зависит 
от наличия в мембране фосфатидилэтаноламина 
[104] или наличия ионов кальция в растворе [26]. 

Аннексин А5
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Мембрана
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Рис. 3. Структура фосфатидилсерин-связывающих доменов и белков. Показано связывание «аннексинового ядра» 
аннексина А5 (PDB код 1A8A) с мембраной через десять координированных ионов Ca2+ (отмечено синим), образу-
ющих «мостики» между белком и мембраной [93, 94]. Связывание С2-домена лактадгерина (LactC2, PDB код 3BN6), 
РН-домена эвектина-2 (PH evt-2, PDB код 3VIA) и Tim4 (PDB код 3BIB) осуществляется путем внедрения гидрофоб-
ных боковых цепей аминокислотных остатков в углеводородный остов мембраны (обозначены красным) [26, 95, 96].
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Важным является то, что связывание аннексина 
А5 приводит к его олигомеризации и образова-
нию решетки на поверхности мембраны [97, 105], 
что делает его непригодным для использования 
в комбинации с другими липидными маркерами 
за счет стерических взаимодействий с ними. В то 
же время характер связывания лактадгерина с PS 
оставляет поверхность мембраны доступной для 
других липидных маркеров. В настоящее время 
лактадгерин успешно применяется для обнаруже-
ния прокоагулянтных тромбоцитов вместе с ан-
нексином А5 [106, 107]. Однако отсутствие про-
стого негативного контроля при использовании 
лактадгерина замедляет его активное внедрение 
как нового и универсального маркера PS. Мет-
ка на основе лактадгерина также доступна в виде 
изолированного C2-домена, который может быть 
рекомбинантно синтезирован в E. coli [108, 109] 
(табл. 1). Связывание С2-домена лактадгерина 
с  мембраной осуществляется путем стереоспе
цифического распознавания головной группы PS 
при помощи положительно заряженных боковых 
цепей аминокислотных остатков K24, K45 и R146 
[27] с последующей стабилизацией связывания 
посредством внедрения ароматических и развет-
вленных боковых цепей аминокислотных остат-
ков в составе гидрофобных спайков 1 (W26, L28, 
F31) и 3 (F81) в мембрану (рис. 3).

Метка, разработанная Taguchi и Arai [28], ос-
нована на последовательности белка эвектин-2. 
Эвектин-2 – белок рециркулирующих эндосом 
[81], необходимый для осуществления ретроград-
ного транспорта из рециркулирующих эндосом 
в аппарат Гольджи [28]. Плекстрин-гомологич-
ный домен (РН-домен) эвектина-2 специфиче-
ски связывается с PS. На данный момент метка 
существует как в виде генетического конструк-
та для имиджинга в живых клетках, так и в виде 
рекомбинантно синтезируемого химерного бел-
ка с белковым флуорофором [110] (табл. 1). Ис-
пользуется преимущественно тандемный димер 
(2хРН evt-2). Связывание РН-домена эвектина-2 
осуществляется путем последовательного пози-
ционирования домена относительно отрицатель-
но заряженной головной группы PS при помощи 
положительно заряженных боковых цепей ами-
нокислотных остатков R11, R18 и K20 и внедре-
ния гидрофобных боковых цепей I15 и L16 в ли-
пидный бислой [96]. Показано, что 2хРН evt-2 
связывается с  PS в  Ld-фазе и  не связывается 
в Lo-фазе [110]. На данный момент в литературе 
присутствует ограниченное число исследований, 
посвященных рекомбинантной метке 2хРН evt-2, 
таким образом, потенциал данного сенсора для 
применения остается неясным.

Tim4  – трансмембранный протеин типа I, 
экспрессирующийся на поверхности макрофа-
гов, который связывается с PS кальций-зависи-
мо при помощи внеклеточного IgV-подобного 
домена [30]. Метка на основе Tim4 была созда-
на группой Nagata [30] и  представляет собой 
внеклеточный домен мышиного Tim4, слитый 
с  Fc-фрагментом человеческого IgG. Аффин-
ность данной метки к PS сравнима с аффинно-
стью лактадгерина, Kd составляет около 2 нМ 
[30] (табл. 1). Связывание Tim4 с PS опосредо-
вано ионами Ca2+, в то время как окончательная 
стабилизация связывания с мембраной проис-
ходит вследствие проникновения гидрофобных 
боковых цепей аминокислотных остатков в угле-
водородный остов мембраны [95] (рис. 3). Хела-
тирование ионов Ca2+ EGTA снижает аффин-
ность сенсора к липосомам, содержащим 30% 
PS в составе мембраны, примерно в 8 раз [95]. 
На основе метки Tim4 также создана аффинная 
смола для выделения внеклеточных везикул [29]. 

Фосфатидилинозитол
Фосфатидилинозитол (PI) является минор-

ным фосфолипидом эукариотических клеточных 
мембран [61], он синтезируется в эндоплазмати-
ческой сети и транспортируется к органеллам 
и мембране. Уникальность PI заключается в его 
роли в качестве предшественника для семи клю-
чевых сигнальных фосфолипидов –фосфоино-
зитидов. Фосфоинозитиды (PPI) образуются пу-
тем фосфорилирования головной группы фос-
фатидилинозитола и имеют решающее значение 
для регулирования многих аспектов мембран-
ного гомеостаза и сигнализации. Фосфолипиды 
данной группы вовлечены в процессы мембран-
ной динамики, такие как миграция клеток, ау-
тофагия, активация Т-клеток и регуляция мем-
бранного контакта. Наиболее известна роль PPI 
в регуляции мембранного транспорта [111–115]. 

На данный момент единственный реком-
бинантный биосенсор PI основан на последо-
вательности PI-специфичной бактериальной 
фосфолипазы С (BcPI-PLCANH), полученной из 
Bacillus cereus [32]. Домены, осуществляющие 
специфическое распознавание фосфорилиро-
ванных головных групп PPI, представляют собой 
консервативные домены гомологии плекстрина 
или Phox (PH- и PX-домены соответственно), 
структурные домены GRAM, цинк-связываю-
щие FYVE-домены, бета-пропеллерный домен 
WD40, обнаруженный в  WIPI1 и  2 [116]. При 
этом рекомбинантные метки основаны на по-
следовательностях PH-, PX- и FYVE-доменов 
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(табл. 1). Отдельную группу составляют метки 
на основе P4C- и P4M-доменов бактериальных 
белков SidC и  SidM [38, 40]. Структурные ис-
следования показывают, что PX- и FYVE-доме-
ны характеризуются комбинированным харак-
тером связывания с  мембраной, основанном 
одновременно на  специфичном связывании 
головной группы целевого липида, электроста-
тическом притяжении и внедрении гидрофоб-
ных боковых цепей в мембрану [94], в то время 
как при связывании PH-доменов, а также P4C- 
и P4M-доменов исключен электростатический 
компонент [94, 117, 118] (рис. 4).

В составе цитоплазматической мембра-
ны наиболее представлены фосфатидилино-
зитол-4-фосфат (PI4P) и  фосфатидилино-
зитол-4,5-бисфосфат (PI(4,5)P2), которые 

присутствуют как в Lo-доменах, так и в Ld-до-
менах [123]. Рекомбинантные метки на основе 
P4M-домена SidC и PH-домена PLCδ1 связыва-
ются в равной степени со своими целевыми ли-
пидами в Lo- и Ld-фазе [123].

При использовании рекомбинантных меток 
на PPI следует учитывать тот факт, что биоло-
гические образцы не могут быть фиксированы 
стандартными растворами, поскольку обра-
ботка мембраны детергентом экстрагирует PPI 
[124]. Также стоит отметить, что существует ве-
роятность связывания самой пробы с  внутри-
клеточными белками, что существенно снижает 
разрешающую способность меток [124]. Мето-
дики фиксации биоматериалов с максимальным 
сохранением PPI для флуоресцентной или элек-
тронной микроскопии обсуждены в [125] и [126].
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Рис. 4. Структура основных типов фосфатидилинозитол-связывающих доменов и белков. В качестве примеров для 
каждого типа приведены PI-специфичная бактериальная фосфолипаза С (BcPI-PLC H82A, PDB код 6S2A) [32, 119], 
димеризованный FYVE-домен раннего эндосомального антигена-1 (FYVE-EEA1x2, PDB код 1JOC), структурно 
необходимые ионы Zn2+ обозначены оранжевым [120], PX-домен NADPH-оксидазы p40phox (PX-p40phox, PDB 
код 1H6H) [121], PH-домен фосфолипазы С гамма 1 (PLCδ1-PH, PDB код 1MAI) [122], P4C- и P4M-домены бак-
териальных белков SidC (P4C-SidC, PDB код 4TRH) [117] и SidM (P4M-SidM, PDB код 4MXP) [118]. Связывание 
осуществляется путем внедрения гидрофобных боковых цепей аминокислотных остатков в углеводородный остов 
мембраны (обозначены красным). 
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Фосфатидная кислота
Структурно фосфатидная кислота (PA) яв-

ляется простейшим глицерофосфолипидом 
и составляет около 1% от всех клеточных липи-
дов [127]. Однако несмотря на свое низкое содер-
жание, PA влияет на локальную кривизну липид-
ного монослоя, поскольку аналогично PE обла-
дает отрицательной спонтанной кривизной [128], 
а  также выполняет функции вторичного мес-
сенджера, модулирует везикулярный транспорт, 
процессы клеточной секреции и пролиферации 
[129]. Дрожжевые белки Spo20p, Opi1p и Raf1 об-
ладают PA-связывающими доменами. Рекомби-
нантные химерные белки c белковым флуорофо-
ром, содержащие PA-связывающие домены этих 
белков, были получены в Е. coli Vitale и соавт. 
[48] (табл. 1). Фагоцитирующие клетки, такие 
как макрофаги, нуждаются в PA для ремоделиро-
вания цитоплазматической мембраны и увеличе-
ния площади поверхности во время фагоцито-
за за счет включения внутриклеточных везикул 
[130, 131]. Химерные белки, полученные слияни-
ем GFP c PA-связывающими доменами Spo20p, 
Opi1p и белка млекопитающих PDE4A1, были 
использованы для оценки аффинности доменов 
к PA, исследования субклеточных компартмен-
тов, где происходит синтез PA в ходе фагоцитоза 
и процесса рекрутирования PA к цитоплазмати-
ческой мембране [48]. 

Сфингомиелин
Сфингомиелин (SM), N-ацилсфинго-

зин-1-фосфорилхолин, является основным ли-
пидным компонентом мембран клеток млекопи-
тающих и составляет около 10% от всех липидов 
в клетках [132]. SM синтезируется путем перено-
са фосфохолина из фосфатидилхолина на цера-
мид [133]. Помимо роли в качестве структурно-
го компонента мембран, SM принимает участие 
в  различных клеточных процессах. Например, 
SM является мишенью для внеклеточных аген-
тов, таких как фактор некроза опухоли α, γ-ин-
терферона и интерлейкина-1, которые активиру-
ют сфингомиелиназу, в результате чего произво-
дится церамид, выступающий в роли вторичного 
мессенджера и опосредующий действие этих вне-
клеточных агентов [134–136]. Благодаря высоко-
му содержанию насыщенных цепей, SM наряду 
с гликосфинголипидами и холестерином форми-
рует микродомены цитоплазматической мембра-
ны, называемые липидными рафтами [137]. Ли-
пидные рафты играют важную роль в трансдук-
ции внутриклеточных сигналов, мембранном 
транспорте и защите клетки от патогенов [138].

Для мечения кластеризованных липидных до-
менов цитоплазматической мембраны использу-
ется B-субъединица холерного токсина, связыва-
ющая ганглиозид 1 (GM1) [139]. Однако не все 
клетки способны экспрессировать GM1 [53]. На 
данный момент существует несколько рекомби-
нантных меток для визуализации SM в клетках. 
Лизенин (lysenin) – SM-связывающий токсин, 
который был выделен из целомической жидко-
сти земляного червя Eisenia foetida [140]. Лизе-
нин специфично связывается с кластерами SM, 
состоящими из 5–6 липидных молекул  [141]. 
В нативном виде лизенин токсичен, однако его 
токсичность зависит от способности к  оли-
гомеризации, которая, в  свою очередь, может 
быть элиминирована путем отрезания участка 
с N-конца белка [50] (табл. 1).

Эквинатоксин II (EqtII)  – другой SM-свя-
зывающий токсин, выделенный из морского 
анемона Actinia equina [142]. EqtII специфично 
взаимодействует с SM и не связывает PC, так-
же показано связывание с  D-эритро-сфинго-
сульфосфорилхолином [142]. Отмечается, что 
химерный белок EqtII-GFP не связывается с до-
менами, обогащенными SM, однако взаимодей-
ствует с доменами, состоящими преимуществен-
но из 1,2-диолеоил-sn-глицеро-3-фосфохолина 
(DOPC) в присутствии низкого содержания SM, 
что указывает на то, что EqtII, в отличие от ли-
зенина, ассоциирован с пулом некластеризован-
ного SM [49]. В то время как мечение лизенином 
качественно коррелирует с концентрацией SM 
на мембране, мечение EqtII-GFP не показало 
такой зависимости [49]. EqtII в нативном виде 
индуцирует лизис эритроцитов и  модельных 
мембран путем формирования пор [143]. Данная 
проблема была решена путем введения дисуль-
фидного мостика между N-концевым участком 
и β-складчатым участком белка, что сохраняет 
SM-связывающую активность белка при сниже-
нии токсичности [51, 144] (табл. 1).

Все прочие известные на данный момент сен-
соры на SM связываются с кластерами, состоя-
щими из SM и холестерина (Chol). Nakanori – 
белок, полученный из гриба Grifola frondosa [53]. 
Nakanori не связывается отдельно с  SM, од-
нако специфично взаимодействует со смесью 
SM/холестерин (SM/Chol) и  не связывается 
с прочими сфинголипидами в смеси с Chol. Для 
взаимодействия с  целевым липидом Nakanori 
требуется 40% холестерина в составе мембраны. 
Kd этого рекомбинантого белка составляет 140 
нМ [53]. Также, помимо Nakanori, белки семей-
ства эгеролизинов: плеуролизин А2 (PlyA, из гри-
ба Pleurotus eryngii) [54] и остреолизин А (OlyA, 



БИОЛОГИЧЕСКИЕ МЕМБРАНЫ	 том 42	 № 2	 2025

	 РЕКОМБИНАНТНЫЕ БЕЛКОВЫЕ БИОСЕНСОРЫ ЛИПИДОВ� 97

из гриба Pleurotus ostreatus) [145], демонстриру-
ют слабое связывание с комплексом SM/Chol 
в искусственных и нативных мембранах. Одна-
ко комплекс SM/Chol не является основной ми-
шенью для белков семейства эгеролизинов, по-
скольку гораздо более сильное взаимодействие 
наблюдается для церамид фосфоэтаноламина 
(CPE), обнаруживаемого в клетках млекопитаю-
щих в следовых количествах [133] (табл. 1).

Холестерин
Холестерин (Chol) является основным ком-

понентом клеточной мембраны млекопитаю-
щих и составляет до 40% от всех липидов мем-
браны [146–149]. Chol поддерживает биофизи-
ческие свойства клеточной мембраны [148, 149], 
включая ригидность и  проницаемость [150], 
служит предшественником стероидов [151] 
и  желчных кислот [152]. Он также участвует 
в  формировании мембранных микродоменов, 
включая липидные рафты [153]. Chol регулиру-
ет структуру и функцию различных интеграль-
ных мембранных белков [154], включая ионные 
каналы  [155,  156] и  рецепторы, сопряженные 
с  G-белком [157]. Chol на  внутренней сторо-
не мембраны специфически взаимодействует 
с цитозольными белками, которые координиру-
ют различные клеточные сигнальные события 
[158–160]. При этом показано, что он распреде-
лен на мембране ассиметрично – концентрация 
доступного Chol на внутренней стороне мембра-
ны на порядок ниже, чем на внешней [161].

Филипин (filipin) на протяжении последних 
десятилетий активно использовался для лока-
лизации Chol в  клетках и  тканях [162]. Фили-
пин является полиеновым макролидным анти-
биотиком, выделенным из бактерии Streptomyces 
filipinensis [163], и специфично связывается с неэ-
терифицированными стеринами. Однако исполь-
зование пробы на основе филипина технически 
затруднено, поскольку он токсичен и  склонен 
к быстрому фотообесцвечиванию [164].

Наиболее распространенная рекомбинантная 
метка на Chol основана на домене D4 холесте-
рин-зависимых цитолизинов перфринголизина 
O (PFO D4) из Clostridium perfringens и антроли-
зина О (ALO D4) из Bacillus anthracis [165–167]. 
Связывание нативного PFO D4 с Chol происхо-
дит только при условии высокого (более 40 мо-
лярных % (мол.%)) содержания Chol в мембра-
не  [56, 168], что сильно ограничивает область 
его применения. В связи с этим с целью сниже-
ния порогового значения для связывания мет-
ки с Chol в последовательность PFO D4 были 

внесены разнообразные точечные мутации (D4H 
(D434S), D434A, D434A/A463W, YDA (Y415A/
D434W/A463W), YQDA (Y415A/Q433W/D434W/
A463W)) [161]. Среди этого перечня наиболее 
перспективными являются мутантные вариан-
ты YDA (табл. 1) и YQDA, поскольку было пока-
зано, что они могут связываться с липосомами 
с содержанием Chol в мембране от 1 мол.%, что 
указывает на то, что данные маркеры могут быть 
использованы для детекции Chol на клеточных 
мембранах в  широком диапазоне концентра-
ций [161]. D4-домен антролизина О (ALO D4) 
обладает похожими свойствами [57] (табл. 1).

Osh4  – это дрожжевой цитозольный белок, 
связывающий Chol, 25-гидроксихолестерин 
(25HC) и фосфатидиоинозитол-4-фосфат (PI(4)
P) [169], и осуществляющий фосфатидилинози-
тол-зависимый транспорт стеринов [170]. Уда-
ление N-концевого участка Osh4 аннулирует его 
стерин-транспортную активность и связывание 
с PI(4)P, а мутация K109 подавляет связывание 
25HC [170]. Таким образом, был создан рекомби-
нантный сенсор на Chol на основе Osh4 (eOsh4) 
путем мутации внутренних цистеинов C68S/
C98S/C229S, мутации К109А и введения мишени 
для мечения флуорофором K108C [56] (табл. 1). 
Данный рекомбинантный сенсор связывается 
с мембранами в присутствии низких концентра-
ций Chol (менее 5 мол.%) [56].

Стерин-связывающий белок Maistero-2, по-
лученный из гриба Grifola frondosa, имеет сни-
женный порог связывания с Chol по сравнению 
с нативным PFO D4 и связывается с мембрана-
ми в присутствии 30% Chol [58] (табл. 1). Отсут-
ствие строго консервативной пары Thr-Leu, при-
сутствующей в других связывающих Chol белках, 
таких как PFO и ALO, указывает на альтернатив-
ный способ распознавания стеринов [58].

GRAM-домен белка GRAMD1b является де-
тектором участков мембраны, обогащенных од-
новременно Chol и анионными липидами, вклю-
чая PS [171]. GRAM-домен дикого типа связы-
вается с Chol в мембране только в присутствии 
достаточно высоких концентраций Chol [171], 
в то время как мутация G187W (метка GRAM-W) 
снижает порог по содержанию Chol до  20% 
в присутствии 20% PS [172] (табл. 1).

ЗАКЛЮЧЕНИЕ

Методики визуализации липидных доменов, 
детекции распределения различных типов липи-
дов сильно продвинулись за последние десятиле-
тия, в значительной степени благодаря открытию 
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и совершенствованию липид-специфичных бел-
ковых сенсоров. На данный момент исследовате-
лям доступен широкий спектр таких сенсоров, ко-
торые могут быть рекомбинантно синтезированы 
в E. coli. Однако использование рекомбинантных 
белковых сенсоров к основным липидам мембра-
ны не лишено некоторых ограничений, таких как 
неспецифичное связывание, не слишком высо-
кая аффинность, порог по минимальному содер-
жанию целевого липида на мембране, сложность 
сохранения распределения липидов на мембране 
при подготовке биологических образцов. Визу-
ализация липидов в живых клетках ограничено 
внутриклеточной экспрессией биосенсоров, хотя 
существуют подходы, позволяющие вводить метки 
внутрь клетки путем инъекции [173, 174].

Биосенсоры с высокой аффинностью и спе
цифичностью доступны только для ограничен-
ного числа липидов. Однако благодаря развитию 
такой области, как дизайн белков de novo воз-
можно создание новых белковых сенсоров [175], 
а также усовершенствование уже существующих. 
Благодаря успешному применению машинного 
обучения для дизайна биосенсоров с целью мо-
ниторинга белок-опосредованной внутриклеточ-
ной передачи сигнала [176] в будущем данный 
подход может быть использован и для дизайна 
липид-связывающих систем.
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Specific patterns of lipid distribution in cell membranes determine their structural and signaling roles, and 
ensure the integrity and functionality of the plasma membrane and cell organelles. Recent advances in 
the development of recombinant lipid biosensors and imaging techniques allow direct observation of the 
distribution, movement, and dynamics of lipids within cells, significantly expanding the understanding of lipid 
functions and their involvement in cellular and subcellular processes. In this review, we summarize the data 
related to the development and application of recombinant protein sensors for various lipids in cell membranes.
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