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Впервые представлена математическая модель гликолиза в  скелетных мышцах млекопитающих, 
в которой стационарные значения концентраций промежуточных метаболитов гликолиза находят‑
ся в хорошем соответствии с экспериментальными данными, полученными в покоящихся мыш‑
цах. Соответствие между модельными и экспериментальными значениями концентраций метабо‑
литов было достигнуто за счет усиления ингибирующего эффекта ATP на пируваткиназу и значи‑
тельного уменьшения соотношения концентраций [NAD+]/[NADH] в цитоплазме скелетных мышц. 
При этом для того, чтобы гликолиз мог обеспечивать скорость производства ATP, необходимую 
при активации мышечной нагрузки, в модель была введена активация мышечной пируваткиназы 
фруктозо‑1,6-дифосфатом.
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ВВЕДЕНИЕ

Гликолиз является одним из основных путей 
производства ATP в клетках. В некоторых клет‑
ках и тканях, таких как эритроциты млекопита‑
ющих или белые скелетные мышцы, гликолиз 
является единственным или основным произ‑
водителем ATP [1–5]. Использование гликоли‑
за в качестве основного источника энергии яв‑
ляется характерной особенностью большинства 
опухолевых клеток [6, 7]. Исследованию глико‑
лиза посвящено большое количество работ [8–
11], и основные принципы регуляции этой ме‑
таболической системы сформулированы много 
лет тому назад [12, 13]. В то же время регуляция 
гликолиза в  большинстве конкретных клеток 
и тканей изучена гораздо хуже. Так, например, 
в скелетных мышцах при интенсивной работе 
активация гликогенфосфорилазы приводит к ак‑
тивации гликолитического потока и к ускорению 
производства ATP за счет потребления гликоге‑
на [14–18]. Однако в  покоящихся мышцах ак‑
тивация гликогенфосфорилазы не приводит ни 

к активации гликолиза, ни к потреблению гли‑
когена [14, 17, 19, 20]. Механизм этой регуляции 
остается неясным [17, 19, 21, 22].

Изучение механизмов регуляции гликолиза 
имеет большое значение для понимания прин‑
ципов организации и регуляции энергетического 
метаболизма и клеточного гомеостаза. Результа‑
ты такого исследования могут быть полезны для 
лучшего понимания механизмов возникнове‑
ния диабета и выработки стратегии его лечения, 
в противоопухолевой терапии, в области спор‑
тивной физиологии и медицины и т.п.

Математическое моделирование и  систем‑
ный анализ являются мощными инструментами 
в исследовании сложных метаболических про‑
цессов [23–27]. Системный анализ был успеш‑
но использован для количественного описания 
регуляции гликолиза в  эритроцитах человека 
и  его влияния на функциональную полноцен‑
ность и жизнеспособность этих клеток [23]. В то 
же время существующие математические модели 
гликолиза в мышечных клетках (тканях) весьма 
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далеки от детального количественного описания 
этой метаболической системы [28–30].

Важным этапом на пути построения количе‑
ственной модели метаболической системы яв‑
ляется описание профиля стационарных кон‑
центраций промежуточных метаболитов в этой 
системе. Нам известна всего одна работа, где та‑
кая попытка была сделана для скелетных мышц 
[30]. При этом были получены существенные 
отличия концентраций промежуточных метабо‑
литов гликолиза в модели от эксперименталь‑
ных значений. Причем для целого ряда мета‑
болитов концентрации в модели отличались от 
экспериментальных значений более чем на два 
порядка.

В настоящей работе на основе количествен‑
ной математической модели гликолиза в эритро‑
цитах человека [23] мы построили модель глико‑
лиза в скелетных мышцах млекопитающих. Мы 
нашли условия, при которых модель правильно 
описывает профиль экспериментально измерен‑
ных концентраций промежуточных метаболитов 
гликолиза в скелетных мышцах млекопитающих 
в покое. Кроме того, мы продемонстрировали, 
что в полученной модели может быть достигну‑
та скорость производства ATP, необходимая при 
активации мышечной нагрузки.

МАТЕРИАЛЫ И МЕТОДЫ

Описание модели. В качестве исходной моде‑
ли в настоящей работе мы использовали коли‑
чественную математическую модель гликолиза, 
разработанную для эритроцитов человека [23]. 
Эта модель представляет собой систему диффе‑
ренциальных уравнений относительно концен‑
траций промежуточных метаболитов гликолиза, 
NADH, ATP и ADP, включает детальные кине‑
тические формулы для скоростей всех фермента‑
тивных реакций гликолиза, от гексокиназной до 
лактатдегидрогеназной, и аденилаткиназное рав‑
новесие. Сумма концентраций NAD+и NADH, 
концентрации Pi, пирувата и лактата в этой мо‑
дели считаются постоянными. Модель позволя‑
ет рассчитать кинетику концентраций всех мета‑
болитов гликолиза, NAD+, NADH, а также ATP, 
ADP и AMP.

В данной работе из этой модели были исклю‑
чены реакции, катализируемые ферментами 
2,3-дифосфоглицератного шунта – дифосфог‑
лицератмутазой и  дифосфоглицератфосфата‑
зой. Поскольку пируваткиназная (PK) реакция 
необратима, мы не включили в  модель пиру‑
ват, лактат и лактатдегидрогеназную реакцию. 

Значения активностей остальных ферментов 
были увеличены в соответствии с литературны‑
ми данными об активности гликолитических 
ферментов в скелетных мышцах млекопитающих 
(табл. 1). Кроме того, модель включает аденилат‑
киназное равновесие и суммарную скорость по‑
требления ATP, за исключением гексокиназной 
и фосфофруктокиназной реакций, обозначен‑
ную как VATPase. Поскольку мы рассматривали 
исключительно стационарные состояния моде‑
ли, то в модель не была включена креатинкина‑
зная реакция, которая может играть существен‑
ную роль лишь в переходных процессах. Схема 
реакций, представленных в модели, показана на 
рис. 1.

Концентрации Pi, глюкозы, NAD+, NADH 
и  пул аденилатов (сумма концентраций ATP, 
ADP и AMP) считаются постоянными. Значение 
концентрации Pi приведено в табл. 2. Концен‑
трация глюкозы в покоящихся скелетных мыш‑
цах лежит в пределах 0.33–1.50 ммоль/кг ткани 
[5, 31–36], что значительно превышает значение 
константы Михаэлиса гексокиназы (HK) для 
глюкозы. В связи с этим HK в модели находится 
в насыщении по глюкозе, и скорость HK реак‑
ции не зависит от [GLU].

Выбор значений для концентраций NAD+ 

и  NADH в  модели требует отдельного рассмо‑
трения. Согласно литературным данным, кон‑
центрации NAD+ и  NADH в  пересчете на мы‑
шечную массу лежат в пределах 333–422 и 18–
44 мкмоль/кг ткани соответственно [37]. Из них 
концентрация NAD+ и NADH в цитоплазме мы‑
шечных клеток составляет, по некоторым оцен‑
кам, 150 и 0.3 мкмоль/кг ткани соответственно 
[29]. При этом отмечается, что значительная доля 
NAD+ и NADH в клетках связана с белками [37], 
в то время как для функционирования гликоли‑
за важны концентрации свободных форм этих 
метаболитов. Надежных данных о соотношении 
связанных и свободных NAD+ и NADH в скелет‑
ных мышцах нет. В качестве базовых условий мы 
предположили, что одна треть NADH и NAD+ 

(0.1 и 50 мкМ) находится в свободном состоянии, 
и  далее варьировали концентрацию свободно‑
го NAD+ от 50 до 1 мкМ. Тем самым отношение 
[NAD+]/[NADH] изменялось от 500 до 10.

Математическая модель представляет собой 
систему обыкновенных дифференциальных 
и алгебраических уравнений относительно кон‑
центраций метаболитов, показанных на рис. 1.
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Рис. 1. Биохимические реакции, включенные в модель. В работе были использованы следующие обозначения для 
ферментов и метаболитов: AK – аденилаткиназа, ALD – альдолаза, ATPase – сумма ATP-потребляющих процес‑
сов, за исключением гексокиназной и фосфофруктокиназной реакций, ENO – енолаза, GAPDH – глицеральде‑
гидфосфатдегидрогеназа, GPI – глюкозофосфатизомераза, HK – гексокиназа, PK – пируваткиназа, PFK – фос‑
фофруктокиназа, PGK – фосфоглицераткиназа, PGM – фосфоглицератмутаза, TPI – триозофосфатизомераза, 
1,3-DPG – 1,3-дифосфоглицерат, 2-PG – 2-фосфоглицерат, 3-PG – 3-фосфоглицерат, DAP – диоксиацетонфосфат, 
F6P – фруктозо‑6-фосфат, FDP – фруктозо‑1,6-дифосфат, G6P – глюкозо‑6-фосфат, GAP – глицеральдегидфос‑
фат, GLU – глюкоза, PEP – фосфоенолпируват. Пунктирной стрелкой показано производство G6P из гликогена 
со скоростью VGLY.



	 БИОЛОГИЧЕСКИЕ МЕМБРАНЫ	 том 42	 № 1	 2025

34	 Мартынов и др.

	
d

dt
V V V

G6P
HK GLY GPI

[ ]
= + − , � (1)

	
d

dt
V V

F6P
GPI PFK

[ ]
= − , � (2)

	
d

dt
V V

FDP
PFK ALD

[ ]
= − , � (3)

	
d

dt
V V

DAP
ALD TPI

[ ]
= − , � (4)

	
d

dt
V V V

GAP
ALD TPI GAPDH

[ ]
= + − , � (5)

	
d

dt
V V

1,3 DPG
GAPDH PGK

[ ]
= − , � (6)

	
d

dt
V V

2PG
PGK PGM

[ ]
= − , � (7)

	
d

dt
V V

3PG
PGM ENO

[ ]
= − , � (8)

	
d

dt
V V

PEP
ENO PK

[ ]
= − , � (9)

de
dt

V V V V V= − − + + −HK PFK PGK PK ATPase, �(10)

	 [ATP][AMP]/[ADP]2 = 1,� (11)

	 [ATP]+[ADP]+[AMP] = 5.40 мМ.� (12)

Здесь VX обозначает скорость реакции, ката‑
лизируемой ферментом X. Скорость производ‑
ства G6P из гликогена (скорость гликогеноли‑
за) обозначена как VGLY и является параметром 

модели. Переменная e = 2[ATP]+[ADP]. Уравне‑
ние для переменной e (10) вместе с уравнения‑
ми (11) и (12) описывает кинетику концентраций 
ATP, ADP и AMP.

Суммарная скорость ATP-потребляющих 
процессов (VATPase) в  покоящихся скелетных 
мышцах была выбрана так, чтобы обеспечить 
стационарное состояние в энергетическом мета‑
болизме. Значение скорости производства ATP 
в покоящихся мышцах, полученное из данных 
о скорости гликолиза, лежит в диапазоне от 8 до 
58 ммоль/ч⋅кг ткани [2, 19, 36, 38]. В модели ско‑
рость производства (и потребления) ATP в поко‑
ящихся мышцах была выбрана равной 35 мМ/ч.

Методы вычислений. Кинетика модели рас‑
считывалась с  помощью библиотеки CVODE 
[52]. В  результате решения задачи Коши для 
системы (1) – (12) при нулевой скорости гли‑
когенолиза (VGLY) мы находили стационарные 
значения [ATP], [ADP] и  [AMP], а  также кон‑
центрации метаболитов гликолиза, при которых 
скорость производства ATP в  гликолизе была 
равна 35 мМ/ч, т.е. была равна скорости произ‑
водства и потребления ATP в покоящихся ске‑
летных мышцах. Зависимость стационарного 
состояния модели от параметров исследовалась 
с помощью пакета AUTO 2000 [53].

Активация гликолиза при стимуляции мышечной 
нагрузки. Для оценки возможности активации 
гликолиза в модели мы варьировали значение 
параметра VGLY, который соответствует скоро‑
сти поступления G6P из гликогена (рис. 1). При 

Таблица 1. Активности ферментов гликолиза в скелетных мышцах млекопитающих. Экспериментальный 
диапазон и значения в модели

Фермент Эксперимент, моль/ч⋅кг ткани* Модель, М/ч Ссылки

HK 0.027–0.18 0.1 [3, 18, 38–45]

GPI 15.1–49.8 20 [39, 46–49]

PFK 2.64–11.5 6 [18, 38, 40, 42–44, 46, 47, 49–51]

ALD 2.16–10.7 6.5 [39, 46–49]

TPI 34.4–484 300 [45, 47, 49]

GAPDH 23.4–104 70 [40, 44–47, 49]

PGK 20.3–60.6 22 [45–47, 49]

PGM 12–47.4 40 [45–47, 49]

ENO 11.8–16.2 12 [45–47, 49]

PK 7.8–56.8 20 [40, 46–49]

*Активности, представленные в единицах моль/ч кг сухого вещества, были переведены в моль/ч⋅кг ткани путем деления на 4.5 [35].
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этом значения концентраций ATP, ADP и AMP 
считались постоянными и равными значениям, 
полученным в  модели для покоящихся мышц 
(табл. 2). При каждом значении параметра VGLY 
вычислялась стационарная скорость производ‑
ства ATP, определяющая допустимый уровень 
стимуляции мышечной нагрузки. Такой подход 
позволил нам оценить возможность активации 
гликолиза при стимуляции мышечной нагрузки, 
не вводя в модель описание регуляции производ‑
ства G6P из гликогена.

Для увеличения допустимой активации ско‑
рости производства ATP в модели мы усилили 
ингибирующее воздействие ATP на PK и парал‑
лельно ввели активирующее влияние FDP на 
скорость PK реакции. С этой целью в уравнении 
для скорости PK реакции из [23]:

V A
K K

K K K

PK PK

PEP ADP
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ADP

PEP ADP
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[ ][ ]
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[ ]
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Таблица 2. Сопоставление экспериментальных значений концентраций промежуточных метаболитов 
гликолиза, ATP, ADP и AMP в покоящихся мышцах млекопитающих со стационарными концентрациями 
этих метаболитов, полученными в разных версиях модели

Метаболит Экспериментa,
мкмоль/кг тканиb

Стационарные концентрации метаболитов в разных версиях моделис, мкМ

Базовая
(1)

PK
(2)

ENO
(3)

PGM
(4)

PGK
(5)

GAPDH
(6)

NAD
(7)

PK(FDP)
(8)

G6P 59–516 119 119 119 119 119 119 119 119

F6P 34–134 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0

FDP 20–80 0.0173 0.0203 0.0210 0.0203 0.0183 0.0712 21.5 21.4

DAP 9–60 1.52 1.65 1.68 1.65 1.56 3.09 53.6 53.5

GAP 2.3–20 0.662 0.719 0.733 0.720 0.682 1.37 24.1 24.0

1,3-DPG нет данных 0.0703 1.02 1.25 1.04 0.409 0.409 0.409 0.408

3-PG 20–40 1.99 40.7 50.1 41.5 41.5 41.5 41.5 41.4

2-PG 10–20 0.420 9.68 11.9 11.9 11.9 11.9 11.9 11.9

PEP 13–50 1.11 41.1 41.1 41.1 41.1 41.1 41.1 41.0

Pi 580–11700 2000 2000 2000 2000 2000 2000 2000 2000

ATP 3980–5740 4815.3 4815.3 4815.3 4815.3 4815.3 4815.3 4815.3 4815.3

ADP 135–640 527 527 527 527 527 527 527 527

AMP 14–98 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7

Свободный 
NADHd нет данных 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Свободный 
NAD+d нет данных 50 50 50 50 50 50 2.5 2.5

aЭкспериментальные значения концентраций метаболитов взяты из работ [5, 31–36, 58–62].
bКонцентрации, представленные в единицах мкмоль/кг сухого вещества, были переведены в мкмоль/кг ткани путем де‑
ления на 4.5 [35].
cВ заголовках столбцов в скобках указана версия модели. Обозначения в заголовках указывают фермент, параметры ко‑
торого изменялись в соответствующей версии модели, или параметр ([NAD]), который был изменен относительно пре‑
дыдущих версий модели. PK(FDP) обозначает версию модели, в которой скорость ферментативной реакции зависит от 
концентрации FDP.
dОценки для концентраций свободного NAD+ и NADH в цитоплазме мышечных клеток были сделаны на основании ли‑
тературных данных [29, 37].
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со значениями параметров KPEP = 0.05 мМ, 
KADP = 0.415 мМ, KATP = 0.35 мМ [23] и значени‑
ем активности APK = 20 M/ч (табл. 1) константа 
ингибирования для ATP (KATP) была заменена 
следующим выражением:

K K
KATP A
FDP

B
= ⋅ +

[ ]







1 , � (14)

где KA = 1 мкМ, KB = 3 мкМ.

РЕЗУЛЬТАТЫ

В первой (базовой) версии модели стационар‑
ные концентрации большинства промежуточных 
метаболитов гликолиза оказываются существен‑
но ниже экспериментальных значений, измерен‑
ных в покоящихся скелетных мышцах млекопи‑
тающих (табл. 2). Причем для 3-PG, 2-PG и PEP 
модельные и экспериментальные значения кон‑
центраций отличаются в 10 и более раз, а для 
FDP более чем на три порядка.

Во второй версии модели активность пиру‑
ваткиназы была снижена до 0.6 М/ч. В соответ‑
ствии с литературными данными [30], это при‑
вело к повышению концентрации 3-PG, 2-PG 
и  PEP до значений, близких к  наблюдаемым 
экспериментально в скелетных мышцах в покое 
(табл. 2).

На следующем этапе (в  третьей версии мо‑
дели) мы скорректировали значение констан‑
ты равновесия для ENO реакции, уменьшив 
его с 6.7 до 3.5 [54]. Кроме того, константа Ми‑
хаэлиса ENO для 2-PG была уменьшена с 56 до 
28 мкМ [55], а  константа Михаэлиса для PEP 
была увеличена с 2 до 50 мкМ [56]. Сделанные 
изменения приблизили реакцию к равновесию 
и привели к дальнейшему улучшению соответ‑
ствия модели с экспериментальными данными 
для [2-PG] (табл. 2).

В четвертой версии модели константа рав‑
новесия PGM реакции была увеличена с  0.24 
до 0.29 [57]. Это привело к улучшению соответ‑
ствия модели с экспериментальными данными 
для [3-PG] (табл. 2).

Коррекция константы равновесия PGK ре‑
акции (увеличение значения константы с 380 до 
1000 [63]), сделанная в пятой версии модели, не 
приводит к существенным изменениям концен‑
траций метаболитов (табл. 2).

В работах, посвященных моделированию 
гликолиза, имеется неопределенность отно‑
сительно значения константы равновесия для 

GAPDH реакции. Нам известна только одна ра‑
бота [64], где была измерена истинная константа 
равновесия:

K
iGAPDH

DPG NADH H

GAP P NAD
=
[ ][ ][ ]

= ⋅
−

[ ][ ][ ]
−

+1 3 85 1 10
,

. . �  (15)

Кажущаяся константа равновесия для GAPDH 
реакции

′ = 




K
K

GAPD
GAPD

H+
� (16)

была измерена при физиологических значени‑
ях рН (около 7.0) в четырех работах [65] и лежит 
в диапазоне 3.6·10–4 – 1.4∙10–3 мМ–1. Вычисление 
кажущейся константы равновесия для GAPDH 
реакции при рН 7.0 из уравнения (15) дает значе‑
ние 5.2·10–5 мМ–1. Таким образом, значение ка‑
жущейся константы равновесия для GAPD име‑
ет экспериментальный разброс в два порядка: 
5.2·10–5 – 1.4∙10–3 мМ–1. В шестой версии модели 
мы использовали значение ′K GAPDH = 5·10–4 мМ–1 

вместо значения 0.136 мМ–1, использованного 
в предыдущих версиях. Изменение константы 
равновесия для GAPDH реакции приводит к за‑
метному увеличению концентраций FDP, DAP 
и GAP в модели, однако они все еще остаются 
существенно ниже экспериментальных значений 
(табл. 2).

Концентрации этих метаболитов удалось 
привести в соответствие с экспериментальны‑
ми значениями за счет значительного сниже‑
ния отношения концентраций [NAD+]/[NADH] 
(табл. 3). Как видно из табл. 3, наиболее полное 
соответствие между экспериментальными и по‑
лученными в  модели значениями концентра‑
ций метаболитов достигается при концентрации 
свободного NAD+ в цитоплазме, равной 2.5 мкМ 
(отношение [NAD+]/[NADH] = 25). Это значе‑
ние концентрации свободного NAD+ было вы‑
брано в качестве параметра для седьмой версии 
модели, использованной для дальнейшего иссле‑
дования (табл. 2).

Мы не корректировали в  модели значение 
константы равновесия для реакции, катализиру‑
емой TPI. Хотя значение константы равновесия 
для этой реакции, измеренное in vitro с очищен‑
ным ферментом, близко к 0.045 [66], отношение 
концентраций [GAP]/[DAP] (соответствующее 
константе равновесия), измеренное in vivo в раз‑
личных клетках и тканях млекопитающих, ока‑
зывается значительно выше и лежит в диапазоне 
0.08–0.57 [32, 33, 61, 67–70]. Было показано, что 
при измерении константы равновесия для TPI 
GAP может взаимодействовать с компонентами 
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реакционной смеси, что приводит к появлению 
его неактивных форм, которые могут повлиять 
на значение измеряемой константы [71]. В свя‑
зи с этим мы предположили, что TPI-реакция 
в клетках находится в равновесии вследствие вы‑
сокой активности фермента, а отношение кон‑
центраций [GAP]/[DAP] отличается от значения 
константы равновесия благодаря присутствию 
неактивных форм GAP, возникающих в резуль‑
тате взаимодействия GAP с внутриклеточными 
компонентами. Мы использовали в модели зна‑
чение 0.45 как эффективное для константы рав‑
новесия TPI-реакции в клетках, которое учиты‑
вает взаимодействие GAP с внутриклеточными 
компонентами.

Особенностью скелетных мышц является 
очень большая скорость потребления ATP при 
стимуляции мышечной активности, которая 
может в 50–100 раз превышать скорость потре‑
бления ATP в покое [18, 36, 72–74]. Таким об‑
разом, для полноценного описания гликолиза 
в скелетных мышцах модель должна допускать 
активацию производства ATP в 50–100 раз при 
соответствующей активации скорости потребле‑
ния ATP. Это означает, что при скорости произ‑
водства ATP в покое, равной 35 мМ/ч, модель 
должна обеспечивать возможность увеличения 
производства ATP до 1.75–3.5 М/ч. Поскольку 
активность HK в модели равна 0.1 М/ч, то ско‑
рость производства ATP из глюкозы не может 
превышать 0.2 М/ч. Для большей активации 

Таблица 3. Влияние соотношения концентраций свободных NAD+ и NADH на значения стационарных 
концентраций метаболитов в версии 7 модели покоящихся скелетных мышц млекопитающих

Метаболит Экспериментa,
мкмоль/кг тканиb

Стационарные концентрации метаболитов в модели версии 7 (табл. 2) при 
разных соотношениях [NAD+] и [NADH],

мкМ

Свободный 
NAD+c нет данных 50 20 10 5 3 2.5 2 1

Свободный
NADHc нет данных 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

G6P 59–516 119 119 119 119 119 119 119 119

F6P 34–134 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6

FDP 20–80 0.0712 0.371 1.40 5.43 15.0 21.5 33.7 136

DAP 9–60 3.09 7.05 13.7 26.9 46.7 53.6 67.06 135

GAP 2.3–20 1.37 3.15 6.13 12.1 20.1 24.1 30.1 60.6

1,3-DPG нет данных 0.409 0.409 0.409 0.409 0.409 0.409 0.409 0.409

3-PG 20–40 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5

2-PG 10–20 11.9 11.9 11.9 11.9 11.9 11.9 11.9 11.9

PEP 13–50 41.1 41.1 41.1 41.1 41.1 41.1 41.1 41.1

ATP 3980–5740 4815.3 4815.3 4815.3 4815.3 4815.3 4815.3 4815.3 4815.3

ADP 135–640 527 527 527 527 527 527 527 527

AMP 14–98 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7

aЭкспериментальные значения концентраций метаболитов были взяты из работ [5, 31–36, 58–62].
bКонцентрации, представленные в единицах мкмоль/кг сухого вещества, были переведены в мкмоль/кг ткани путем де‑
ления на 4.5 [35].
cОценки для концентраций свободного NAD+ и NADH в цитоплазме мышечных клеток были сделаны на основании ли‑
тературных данных [29, 37].
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Рис. 2. Влияние активации пируваткиназы фруктозо‑1,6-дифосфатом на скорость производства ATP в модели 
при стимуляции мышечной работы. а, б – Соотношение между скоростью производства G6P из гликогена (VGLY) 
и стационарной скоростью производства ATP при стимуляции мышечной работы в модели с PK, независимой от 
FDP (а), и с PK, активируемой FDP (б). в, г – Зависимость стационарных концентраций метаболитов гликолиза 
от скорости производства ATP в модели с PK, независимой от FDP (в), и с PK, активируемой FDP (г). Стимуляция 
мышечной работы рассматривается как увеличение скорости потребления ATP. На графиках представлены ста‑
ционарные значения скоростей и концентраций. Поэтому во всех случаях скорости производства и потребления 
ATP равны между собой.
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производства ATP необходимо дополнительное 
производство G6P из гликогена (рис. 1). Одна‑
ко при активности PK в модели, равной 0.6 М/ч, 
гликолиз все равно не может обеспечить необ‑
ходимую активацию скорости производства ATP. 
Как видно из рис. 2а, максимальная скорость 
производства ATP, которая может быть достиг‑
нута в  этой версии модели, составляет около 
0.5 М/ч, что соответствует активации гликолиза 
в 14 раз. Однако такая скорость достигается при 
недопустимо высоком накоплении метаболитов, 
в первую очередь FDP (рис. 2в), которое может 
вызвать осмотическое разрушение клеток [26]. 
При допустимом накоплении метаболитов в мо‑
дели, в пределах 10 мМ, скорость производства 
ATP еще меньше и составляет около 329 мМ/ч, 
что соответствует активации производства ATP 
всего лишь в 9.4 раза по сравнению с состояни‑
ем покоя. Синхронный рост концентраций всех 
метаболитов от PEP до FDP на рис. 2в указыва‑
ет на то, что лимитирующим скорость гликолиза 
участком в этом случае является PK.

Для обеспечения достаточно значительного 
увеличения производства ATP в  восьмой вер‑
сии модели мы усилили ингибирующий эф‑
фект ATP на PK и параллельно ввели активацию 
PK фруктозо‑1,6-дифосфатом (уравнения (13), 
(14)). В этом случае удается получить достаточ‑
но низкую активность PK реакции в покоящихся 
мышцах, обеспечивающую соответствие между 
экспериментальными и полученными в модели 
значениями концентраций PEP, 2-PG и 3-PG 
(табл. 2), и в то же время обеспечить достаточ‑
но сильное увеличение производства ATP при 
стимуляции мышечной активности (рис.  2б). 
Как видно из рис.  2б, максимальная скорость 
производства ATP, которая может быть достиг‑
нута в этой версии модели, превышает 2.5 М/ч, 
что соответствует активации гликолиза в 70 раз. 
Однако, как и в седьмой версии модели, макси‑
мальная скорость достигается при недопустимо 
высоких концентрациях метаболитов, в первую 
очередь FDP (рис. 2г), что может вызвать осмо‑
тическое разрушение клеток. При допустимом 
накоплении метаболитов в модели, в пределах 
10 мМ, скорость производства ATP составляет 
2.07 М/ч, что соответствует 59-кратной актива‑
ции производства ATP по сравнению с  состо‑
янием покоя. Такая активация лежит в  преде‑
лах экспериментально наблюдаемой активации 
гликолиза при стимуляции мышечной нагрузки. 
Более того, в этой версии модели сохраняется 
активность пируваткиназы, соответствующая 
экспериментальным наблюдаемым значениям 
в скелетных мышцах млекопитающих (табл. 1).

Из рис. 2г видно, что с увеличением скорости 
производства ATP концентрации PEP и 2-PG 
снижаются, а  концентрации 1,3-DPG, GAP 
и  FDP растут. Это указывает на то, что в  дан‑
ном случае лимитирующим скорость гликолиза 
участком является не PK, а PGK и, возможно, 
GAPDH.

Надо отметить, что результаты, приведенные 
на рис. 2, имеют скорее качественный, чем коли‑
чественный характер, поскольку получены при 
довольно искусственных предположениях о по‑
стоянстве концентраций NAD+, NADH, ATP, 
ADP и AMP.

Интересно также отметить, что модифика‑
ция модели никак не повлияла на стационар‑
ные значения концентраций ATP, ADP и AMP 
(табл. 2 и 3). Это связано с тем, что стационар‑
ная скорость производства ATP в  гликолизе 
определяется скоростью его потребления и ре‑
гулируется ферментами PFK и  HK [75], кото‑
рые не подвергались модификации в  данной 
работе. Скорость реакций, катализируемых эти‑
ми ферментами, регулируется концентрациями 
ATP и AMP. Поскольку во всех версиях модели 
скорость потребления ATP в покое оставалась 
постоянной, то и значения концентраций ATP 
и AMP (и, следовательно, ADP) не менялись.

ОБСУЖДЕНИЕ

В результате модификации количественной 
математической модели гликолиза эритроцитов 
человека нами была построена математическая 
модель гликолиза в скелетных мышцах млекопи‑
тающих, в которой стационарные значения кон‑
центраций метаболитов в состоянии покоя на‑
ходятся в хорошем соответствии с эксперимен‑
тальными значениями, приведенными для этих 
метаболитов в литературе. Для достижения соот‑
ветствия между теоретическими и эксперимен‑
тальными значениями концентраций метаболи‑
тов было сделано несколько существенных пред‑
положений. Во-первых, было предположено, что 
активность PK в скелетных мышцах в состоянии 
покоя существенно ниже приведенных в литера‑
туре экспериментальных значений. Такое пред‑
положение уже высказывалось ранее в литера‑
туре [30]. При этом, для того чтобы обеспечить 
необходимую скорость производства ATP в гли‑
колизе при стимуляции мышечной работы, мы 
предположили, что FDP значительно активирует 
PK. Кроме того, для описания профиля метабо‑
литов гликолиза в покоящихся скелетных мыш‑
цах пришлось предположить, что в мышечных 
клетках отношение концентраций свободных 
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NAD+ и NADH ([NAD+]/[NADH]) в цитоплазме 
существенно ниже предполагаемых в литературе 
значений.

Первое из указанных выше предположений 
можно объяснить тем, что в  покоящихся ске‑
летных мышцах PK подвержена сильному ин‑
гибированию аденозинтрифосфатом, и  FDP 
снимает это ингибирование. Хотя считается, что 
у  птиц и  млекопитающих FDP не активирует 
мышечную PK [76, 77], эта активация наблю‑
дается экспериментально при высоких концен‑
трациях FDP [78], которые можно ожидать при 
активации мышечной работы (рис. 2). Активи‑
рующее влияние FDP на PK было обнаружено 
в эмбриональных мышцах крыс и кур [79, 80]. 
Вполне возможно, что аллостерическая регуля‑
ция мышечной пируваткиназы теряется в усло‑
виях измерения ее кинетических свойств in vitro. 
Действительно, кинетические характеристики 
выделенного фермента in vitro могут существен‑
но отличаться от кинетических характеристик 
этого фермента при внутриклеточных условиях. 
Например, было показано, что в лизатах печени 
и клеток цистатионин b-синтаза активируется 
S-аденозилметионином гораздо сильнее, чем 
очищенный фермент [81]. Более того, вполне 
возможно, что аллостерическая регуляция мы‑
шечной пируваткиназы in vivo обусловлена взаи
модействием не с FDP, а с каким-то другим ме‑
таболитом [77].

Что касается предположения о более низком 
отношении [NAD+]/[NADH] в скелетных мыш‑
цах, то надо отметить, что NADH – лабильный 
метаболит, который может легко окисляться 
в процессе отбора и подготовки образцов для его 
определения. В связи с этим вполне естествен‑
но предположить, что его концентрация, приве‑
денная в литературе для скелетных мышц, может 
быть занижена. На это косвенно указывают дан‑
ные по измерению отношения [NAD+]/[NADH] 
в культурах клеток, когда фиксация образца мо‑
жет быть сделана очень быстро [82, 83]. В этих 
условиях отношение [NAD+]/[NADH], измерен‑
ное в разных клетках, оказывается значительно 
ниже (а  относительная концентрация NADH 
оказывается значительно выше), чем в скелет‑
ных мышцах.

Указанные предположения являются прин‑
ципиальными для моделирования профиля 
концентраций метаболитов гликолиза в  ске‑
летных мышцах млекопитающих. Как видно из 
табл. 2, коррекция значений констант равнове‑
сия ферментативных реакций и модификация 
кинетических параметров ENO не оказывают 

существенного влияния на профиль концентра‑
ций метаболитов гликолиза в модели.

Естественно, сделанные предположения 
нуждаются в экспериментальной проверке. Тем 
не менее можно заключить, что представленная 
модель является первым шагом на пути серьез‑
ного системного изучения регуляции энергети‑
ческого метаболизма в скелетных мышцах.
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Simulation of the Glycolytic Metabolites Concentration Profile  
in Mammalian Resting Skeletal Muscles
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For the first time, a mathematical model of glycolysis in mammalian skeletal muscles is presented, in which 
stationary concentrations of glycolysis metabolites are in good agreement with experimental data obtained in 
resting muscles. The correspondence between the model and experimental values of metabolite concentrations 
was achieved due to enhancing the inhibitory effect of ATP on pyruvate kinase and significantly reducing the 
ratio of [NAD]/[NADH] concentrations in the cytoplasm of skeletal muscles. At the same time, in order for 
glycolysis to provide the rate of ATP production necessary for activation of muscle load, an activation of muscle 
pyruvate kinase by fructose‑1,6-diphosphate was included in the model.
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